Cargando…
Ethical Redress of Racial Inequities in AI: Lessons from Decoupling Machine Learning from Optimization in Medical Appointment Scheduling
An Artificial Intelligence algorithm trained on data that reflect racial biases may yield racially biased outputs, even if the algorithm on its own is unbiased. For example, algorithms used to schedule medical appointments in the USA predict that Black patients are at a higher risk of no-show than n...
Autores principales: | Shanklin, Robert, Samorani, Michele, Harris, Shannon, Santoro, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584259/ https://www.ncbi.nlm.nih.gov/pubmed/36284736 http://dx.doi.org/10.1007/s13347-022-00590-8 |
Ejemplares similares
-
Ethical considerations for direct scheduling of patient appointments
por: Gangal, Ameya, et al.
Publicado: (2022) -
‘Improving the odds for everybody’: Narrative and media in stem cell donor recruitment patient appeals, and the work to redress racial inequity
por: Williams, Ros
Publicado: (2022) -
Lycopene: Redress for Prostate Cancer
por: Pisipati, Sai Venkata Vedavyas, et al.
Publicado: (2012) -
The ethical urgency of tackling racial inequities in health
por: Bastos, João L, et al.
Publicado: (2021) -
Universal Pharmacare – Redressing Social Inequities in the Canadian Health System: A Response to Recent Commentaries
por: Hajizadeh, Mohammad, et al.
Publicado: (2020)