Cargando…
Considerate motion imagination classification method using deep learning
In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distri...
Autores principales: | Yan, Zhaokun, Yang, Xiangquan, Jin, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584501/ https://www.ncbi.nlm.nih.gov/pubmed/36264857 http://dx.doi.org/10.1371/journal.pone.0276526 |
Ejemplares similares
-
Imagined Speech Classification Using EEG and Deep Learning
por: Abdulghani, Mokhles M., et al.
Publicado: (2023) -
Recognition of EEG Signals from Imagined Vowels Using Deep Learning Methods
por: Sarmiento, Luis Carlos, et al.
Publicado: (2021) -
Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG
por: Cooney, Ciaran, et al.
Publicado: (2020) -
Imagined Self-Motion Differs from Perceived Self-Motion: Evidence from a Novel Continuous Pointing Method
por: Campos, Jennifer L., et al.
Publicado: (2009) -
Classification of regular and chaotic motions in Hamiltonian systems with deep learning
por: Celletti, Alessandra, et al.
Publicado: (2022)