Cargando…
Evidence for selection on SARS-CoV-2 RNA translation revealed by the evolutionary dynamics of mutations in UTRs and CDSs
RNA translation is the rate-limiting step when cells synthesize proteins. Elevating translation efficiency (TE) is intuitively beneficial. Particularly, when viruses invade host cells, how to compete with endogenous RNAs for efficient translation is a major issue to be resolved. We collected million...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584556/ https://www.ncbi.nlm.nih.gov/pubmed/35762570 http://dx.doi.org/10.1080/15476286.2022.2092351 |
Sumario: | RNA translation is the rate-limiting step when cells synthesize proteins. Elevating translation efficiency (TE) is intuitively beneficial. Particularly, when viruses invade host cells, how to compete with endogenous RNAs for efficient translation is a major issue to be resolved. We collected millions of worldwide SARS-CoV-2 sequences during the past year and traced the dynamics of allele frequency of every mutation. We defined adaptive and deleterious mutations according to the rise and fall of their frequencies along time. For 5ʹUTR and synonymous mutations in SARS-CoV-2, the selection on TE is evident near start codons. Adaptive mutations generally decrease GC content while deleterious mutations increase GC content. This trend fades away with increasing distance to start codons. Mutations decreasing GC content near start codons would unravel the complex RNA structure and facilitate translation initiation, which are beneficial to SARS-CoV-2, and vice versa. During this evolutionary arms race between human and virus, SARS-CoV-2 tries to improve its cis elements to compete with host RNAs for rapid translation. |
---|