Cargando…
MFDA: Multiview fusion based on dual-level attention for drug interaction prediction
Drug-drug interaction prediction plays an important role in pharmacology and clinical applications. Most traditional methods predict drug interactions based on drug attributes or network structure. They usually have three limitations: 1) failing to integrate drug features and network structures well...
Autores principales: | Lin, Kaibiao, Kang, Liping, Yang, Fan, Lu, Ping, Lu, Jiangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584567/ https://www.ncbi.nlm.nih.gov/pubmed/36278200 http://dx.doi.org/10.3389/fphar.2022.1021329 |
Ejemplares similares
-
Landscape Fusion Method Based on Augmented Reality and Multiview Reconstruction
por: Song, Genlong, et al.
Publicado: (2022) -
Incomplete Multiview Clustering via Late Fusion
por: Ye, Yongkai, et al.
Publicado: (2018) -
Health insurance fraud detection by using an attributed heterogeneous information network with a hierarchical attention mechanism
por: Lu, Jiangtao, et al.
Publicado: (2023) -
A Belief Two-Level Weighted Clustering Method for Incomplete Pattern Based on Multiview Fusion
por: Ma, Zong-fang, et al.
Publicado: (2022) -
Drug–disease association prediction with literature based multi-feature fusion
por: Kang, Hongyu, et al.
Publicado: (2023)