Cargando…

A Parallel Spiking Neural Network Based on Adaptive Lateral Inhibition Mechanism for Objective Recognition

Spiking neural network (SNN) has attracted extensive attention in the field of machine learning because of its biological interpretability and low power consumption. However, the accuracy of pattern recognition cannot completely surpass deep neural networks (DNNs). The main reason is that the inhere...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Qiang, Dong, Hongbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584686/
https://www.ncbi.nlm.nih.gov/pubmed/36275955
http://dx.doi.org/10.1155/2022/4242235
Descripción
Sumario:Spiking neural network (SNN) has attracted extensive attention in the field of machine learning because of its biological interpretability and low power consumption. However, the accuracy of pattern recognition cannot completely surpass deep neural networks (DNNs). The main reason is that the inherent nondifferentiability of spiking neurons makes SNN unable to be trained directly by the gradient descent algorithm, and there is also no unified training algorithm for SNN. Inspired by the biological vision system, this paper proposes a parallel convolution SNN structure combined with an adaptive lateral inhibition mechanism. And, a way of dynamically evolving the time constant with the training of SNN is proposed to ensure the diversity of neurons. This paper verifies the effectiveness of the proposed methods on static datasets and neuromorphic datasets and extends it to the recognition of breast tumors. Experimental results show that the SNN has obvious advantages in dynamical datasets. For breast tumors, it is also an edge-based task, because the edge of a medical image contains the most important information in the image. This kind of information can provide great help for the noninvasive and accurate diagnosis of diseases. The Experimental results show that the proposed method is very close to the recognition results of DNNs on static datasets, and its performance on neuromorphic datasets exceeds that of DNNs.