Cargando…
Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
Humans experience a variety of emotions throughout the course of their daily lives, including happiness, sadness, and rage. As a result, an effective emotion identification system is essential for electroencephalography (EEG) data to accurately reflect emotion in real-time. Although recent studies o...
Autores principales: | Aung, Si Thu, Hassan, Mehedi, Brady, Mark, Mannan, Zubaer Ibna, Azam, Sami, Karim, Asif, Zaman, Sadika, Wongsawat, Yodchanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584707/ https://www.ncbi.nlm.nih.gov/pubmed/36275950 http://dx.doi.org/10.1155/2022/6000989 |
Ejemplares similares
-
Modified-Distribution Entropy as the Features for the Detection of Epileptic Seizures
por: Aung, Si Thu, et al.
Publicado: (2020) -
Prediction of epileptic seizures based on multivariate multiscale modified-distribution entropy
por: Aung, Si Thu, et al.
Publicado: (2021) -
Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP’s in multichannel EEGs
por: Padma Shri, T. K., et al.
Publicado: (2017) -
Effects of brain activity, morning salivary cortisol, and emotion regulation on cognitive impairment in elderly people
por: Sroykham, Watchara, et al.
Publicado: (2019) -
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
por: Li, Mi, et al.
Publicado: (2018)