Cargando…
Pavement Disease Detection through Improved YOLOv5s Neural Network
An improved Ghost-YOLOv5s detection algorithm is proposed in this paper to solve the problems of high computational load and undesirable recognition rate in the traditional detection methods of pavement diseases. Ghost modules and C3Ghost are introduced into the YOLOv5s network to reduce the FLOPs (...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584716/ https://www.ncbi.nlm.nih.gov/pubmed/36275977 http://dx.doi.org/10.1155/2022/1969511 |
_version_ | 1784813332800208896 |
---|---|
author | Chu, Yinze Xiang, Xinjian Wang, Yilin Huang, Binqiang |
author_facet | Chu, Yinze Xiang, Xinjian Wang, Yilin Huang, Binqiang |
author_sort | Chu, Yinze |
collection | PubMed |
description | An improved Ghost-YOLOv5s detection algorithm is proposed in this paper to solve the problems of high computational load and undesirable recognition rate in the traditional detection methods of pavement diseases. Ghost modules and C3Ghost are introduced into the YOLOv5s network to reduce the FLOPs (floating-point operations) in the feature channel fusion process. Mosaic data augmentation is also added to improve the feature expression performance. A public road disease dataset is reconstructed to verify the performance of the proposed method. The proposed model is trained and deployed to NVIDIA Jetson Nano for the experiment, and the results show that the average accuracy of the proposed model reaches 88.17%, increased by 4.01%, and the model FPS (frames per second) reaches 12.51, increased by 184% compared with the existing YOLOv5s. Case studies show that the proposed method satisfies the practical application requirements of pavement disease detection. |
format | Online Article Text |
id | pubmed-9584716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95847162022-10-21 Pavement Disease Detection through Improved YOLOv5s Neural Network Chu, Yinze Xiang, Xinjian Wang, Yilin Huang, Binqiang Comput Intell Neurosci Research Article An improved Ghost-YOLOv5s detection algorithm is proposed in this paper to solve the problems of high computational load and undesirable recognition rate in the traditional detection methods of pavement diseases. Ghost modules and C3Ghost are introduced into the YOLOv5s network to reduce the FLOPs (floating-point operations) in the feature channel fusion process. Mosaic data augmentation is also added to improve the feature expression performance. A public road disease dataset is reconstructed to verify the performance of the proposed method. The proposed model is trained and deployed to NVIDIA Jetson Nano for the experiment, and the results show that the average accuracy of the proposed model reaches 88.17%, increased by 4.01%, and the model FPS (frames per second) reaches 12.51, increased by 184% compared with the existing YOLOv5s. Case studies show that the proposed method satisfies the practical application requirements of pavement disease detection. Hindawi 2022-10-13 /pmc/articles/PMC9584716/ /pubmed/36275977 http://dx.doi.org/10.1155/2022/1969511 Text en Copyright © 2022 Yinze Chu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chu, Yinze Xiang, Xinjian Wang, Yilin Huang, Binqiang Pavement Disease Detection through Improved YOLOv5s Neural Network |
title | Pavement Disease Detection through Improved YOLOv5s Neural Network |
title_full | Pavement Disease Detection through Improved YOLOv5s Neural Network |
title_fullStr | Pavement Disease Detection through Improved YOLOv5s Neural Network |
title_full_unstemmed | Pavement Disease Detection through Improved YOLOv5s Neural Network |
title_short | Pavement Disease Detection through Improved YOLOv5s Neural Network |
title_sort | pavement disease detection through improved yolov5s neural network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584716/ https://www.ncbi.nlm.nih.gov/pubmed/36275977 http://dx.doi.org/10.1155/2022/1969511 |
work_keys_str_mv | AT chuyinze pavementdiseasedetectionthroughimprovedyolov5sneuralnetwork AT xiangxinjian pavementdiseasedetectionthroughimprovedyolov5sneuralnetwork AT wangyilin pavementdiseasedetectionthroughimprovedyolov5sneuralnetwork AT huangbinqiang pavementdiseasedetectionthroughimprovedyolov5sneuralnetwork |