Cargando…
Pavement Disease Detection through Improved YOLOv5s Neural Network
An improved Ghost-YOLOv5s detection algorithm is proposed in this paper to solve the problems of high computational load and undesirable recognition rate in the traditional detection methods of pavement diseases. Ghost modules and C3Ghost are introduced into the YOLOv5s network to reduce the FLOPs (...
Autores principales: | Chu, Yinze, Xiang, Xinjian, Wang, Yilin, Huang, Binqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584716/ https://www.ncbi.nlm.nih.gov/pubmed/36275977 http://dx.doi.org/10.1155/2022/1969511 |
Ejemplares similares
-
PDNet: Improved YOLOv5 Nondeformable Disease Detection Network for Asphalt Pavement
por: Yang, Zhen, et al.
Publicado: (2022) -
Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
por: Huang, Peile, et al.
Publicado: (2023) -
A pavement distresses identification method optimized for YOLOv5s
por: Guo, Keyou, et al.
Publicado: (2022) -
SGN-YOLO: Detecting Wood Defects with Improved YOLOv5 Based on Semi-Global Network
por: Meng, Wei, et al.
Publicado: (2023) -
YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection
por: Zhu, Ronghua, et al.
Publicado: (2023)