Cargando…
Replication-associated inversions are the dominant form of bacterial chromosome structural variation
The structural arrangements of bacterial chromosomes vary widely between closely related species and can result in significant phenotypic outcomes. The appearance of large-scale chromosomal inversions that are symmetric relative to markers for the origin of replication (OriC) has been previously obs...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584773/ https://www.ncbi.nlm.nih.gov/pubmed/36261227 http://dx.doi.org/10.26508/lsa.202201434 |
_version_ | 1784813346786115584 |
---|---|
author | D’Iorio, Matthew Dewar, Ken |
author_facet | D’Iorio, Matthew Dewar, Ken |
author_sort | D’Iorio, Matthew |
collection | PubMed |
description | The structural arrangements of bacterial chromosomes vary widely between closely related species and can result in significant phenotypic outcomes. The appearance of large-scale chromosomal inversions that are symmetric relative to markers for the origin of replication (OriC) has been previously observed; however, the overall prevalence of replication-associated structural rearrangements (RASRs) in bacteria and their causal mechanisms are currently unknown. Here, we systematically identify the locations of RASRs in species with multiple complete-sequenced genomes and investigate potential mediating biological mechanisms. We found that 247 of 313 species contained sequences with at least one large (>50 Kb) inversion in their sequence comparisons, and the aggregated inversion distances away from symmetry were normally distributed with a mean of zero. Many inversions that were offset from dnaA were found to be centered on a different marker for the OriC. Instances of flanking repeats provide evidence that breaks formed during the replication process could be repaired to opposing positions. We also found a strong relationship between the later stages of replication and the range in distance variation from symmetry. |
format | Online Article Text |
id | pubmed-9584773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-95847732022-10-21 Replication-associated inversions are the dominant form of bacterial chromosome structural variation D’Iorio, Matthew Dewar, Ken Life Sci Alliance Research Articles The structural arrangements of bacterial chromosomes vary widely between closely related species and can result in significant phenotypic outcomes. The appearance of large-scale chromosomal inversions that are symmetric relative to markers for the origin of replication (OriC) has been previously observed; however, the overall prevalence of replication-associated structural rearrangements (RASRs) in bacteria and their causal mechanisms are currently unknown. Here, we systematically identify the locations of RASRs in species with multiple complete-sequenced genomes and investigate potential mediating biological mechanisms. We found that 247 of 313 species contained sequences with at least one large (>50 Kb) inversion in their sequence comparisons, and the aggregated inversion distances away from symmetry were normally distributed with a mean of zero. Many inversions that were offset from dnaA were found to be centered on a different marker for the OriC. Instances of flanking repeats provide evidence that breaks formed during the replication process could be repaired to opposing positions. We also found a strong relationship between the later stages of replication and the range in distance variation from symmetry. Life Science Alliance LLC 2022-10-19 /pmc/articles/PMC9584773/ /pubmed/36261227 http://dx.doi.org/10.26508/lsa.202201434 Text en © 2022 D’Iorio and Dewar https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles D’Iorio, Matthew Dewar, Ken Replication-associated inversions are the dominant form of bacterial chromosome structural variation |
title | Replication-associated inversions are the dominant form of bacterial chromosome structural variation |
title_full | Replication-associated inversions are the dominant form of bacterial chromosome structural variation |
title_fullStr | Replication-associated inversions are the dominant form of bacterial chromosome structural variation |
title_full_unstemmed | Replication-associated inversions are the dominant form of bacterial chromosome structural variation |
title_short | Replication-associated inversions are the dominant form of bacterial chromosome structural variation |
title_sort | replication-associated inversions are the dominant form of bacterial chromosome structural variation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584773/ https://www.ncbi.nlm.nih.gov/pubmed/36261227 http://dx.doi.org/10.26508/lsa.202201434 |
work_keys_str_mv | AT dioriomatthew replicationassociatedinversionsarethedominantformofbacterialchromosomestructuralvariation AT dewarken replicationassociatedinversionsarethedominantformofbacterialchromosomestructuralvariation |