Cargando…
Proteogenomics refines the molecular classification of chronic lymphocytic leukemia
Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer ent...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584885/ https://www.ncbi.nlm.nih.gov/pubmed/36266272 http://dx.doi.org/10.1038/s41467-022-33385-8 |
_version_ | 1784813374164434944 |
---|---|
author | Herbst, Sophie A. Vesterlund, Mattias Helmboldt, Alexander J. Jafari, Rozbeh Siavelis, Ioannis Stahl, Matthias Schitter, Eva C. Liebers, Nora Brinkmann, Berit J. Czernilofsky, Felix Roider, Tobias Bruch, Peter-Martin Iskar, Murat Kittai, Adam Huang, Ying Lu, Junyan Richter, Sarah Mermelekas, Georgios Umer, Husen Muhammad Knoll, Mareike Kolb, Carolin Lenze, Angela Cao, Xiaofang Österholm, Cecilia Wahnschaffe, Linus Herling, Carmen Scheinost, Sebastian Ganzinger, Matthias Mansouri, Larry Kriegsmann, Katharina Kriegsmann, Mark Anders, Simon Zapatka, Marc Del Poeta, Giovanni Zucchetto, Antonella Bomben, Riccardo Gattei, Valter Dreger, Peter Woyach, Jennifer Herling, Marco Müller-Tidow, Carsten Rosenquist, Richard Stilgenbauer, Stephan Zenz, Thorsten Huber, Wolfgang Tausch, Eugen Lehtiö, Janne Dietrich, Sascha |
author_facet | Herbst, Sophie A. Vesterlund, Mattias Helmboldt, Alexander J. Jafari, Rozbeh Siavelis, Ioannis Stahl, Matthias Schitter, Eva C. Liebers, Nora Brinkmann, Berit J. Czernilofsky, Felix Roider, Tobias Bruch, Peter-Martin Iskar, Murat Kittai, Adam Huang, Ying Lu, Junyan Richter, Sarah Mermelekas, Georgios Umer, Husen Muhammad Knoll, Mareike Kolb, Carolin Lenze, Angela Cao, Xiaofang Österholm, Cecilia Wahnschaffe, Linus Herling, Carmen Scheinost, Sebastian Ganzinger, Matthias Mansouri, Larry Kriegsmann, Katharina Kriegsmann, Mark Anders, Simon Zapatka, Marc Del Poeta, Giovanni Zucchetto, Antonella Bomben, Riccardo Gattei, Valter Dreger, Peter Woyach, Jennifer Herling, Marco Müller-Tidow, Carsten Rosenquist, Richard Stilgenbauer, Stephan Zenz, Thorsten Huber, Wolfgang Tausch, Eugen Lehtiö, Janne Dietrich, Sascha |
author_sort | Herbst, Sophie A. |
collection | PubMed |
description | Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling. |
format | Online Article Text |
id | pubmed-9584885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-95848852022-10-22 Proteogenomics refines the molecular classification of chronic lymphocytic leukemia Herbst, Sophie A. Vesterlund, Mattias Helmboldt, Alexander J. Jafari, Rozbeh Siavelis, Ioannis Stahl, Matthias Schitter, Eva C. Liebers, Nora Brinkmann, Berit J. Czernilofsky, Felix Roider, Tobias Bruch, Peter-Martin Iskar, Murat Kittai, Adam Huang, Ying Lu, Junyan Richter, Sarah Mermelekas, Georgios Umer, Husen Muhammad Knoll, Mareike Kolb, Carolin Lenze, Angela Cao, Xiaofang Österholm, Cecilia Wahnschaffe, Linus Herling, Carmen Scheinost, Sebastian Ganzinger, Matthias Mansouri, Larry Kriegsmann, Katharina Kriegsmann, Mark Anders, Simon Zapatka, Marc Del Poeta, Giovanni Zucchetto, Antonella Bomben, Riccardo Gattei, Valter Dreger, Peter Woyach, Jennifer Herling, Marco Müller-Tidow, Carsten Rosenquist, Richard Stilgenbauer, Stephan Zenz, Thorsten Huber, Wolfgang Tausch, Eugen Lehtiö, Janne Dietrich, Sascha Nat Commun Article Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling. Nature Publishing Group UK 2022-10-20 /pmc/articles/PMC9584885/ /pubmed/36266272 http://dx.doi.org/10.1038/s41467-022-33385-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Herbst, Sophie A. Vesterlund, Mattias Helmboldt, Alexander J. Jafari, Rozbeh Siavelis, Ioannis Stahl, Matthias Schitter, Eva C. Liebers, Nora Brinkmann, Berit J. Czernilofsky, Felix Roider, Tobias Bruch, Peter-Martin Iskar, Murat Kittai, Adam Huang, Ying Lu, Junyan Richter, Sarah Mermelekas, Georgios Umer, Husen Muhammad Knoll, Mareike Kolb, Carolin Lenze, Angela Cao, Xiaofang Österholm, Cecilia Wahnschaffe, Linus Herling, Carmen Scheinost, Sebastian Ganzinger, Matthias Mansouri, Larry Kriegsmann, Katharina Kriegsmann, Mark Anders, Simon Zapatka, Marc Del Poeta, Giovanni Zucchetto, Antonella Bomben, Riccardo Gattei, Valter Dreger, Peter Woyach, Jennifer Herling, Marco Müller-Tidow, Carsten Rosenquist, Richard Stilgenbauer, Stephan Zenz, Thorsten Huber, Wolfgang Tausch, Eugen Lehtiö, Janne Dietrich, Sascha Proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
title | Proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
title_full | Proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
title_fullStr | Proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
title_full_unstemmed | Proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
title_short | Proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
title_sort | proteogenomics refines the molecular classification of chronic lymphocytic leukemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584885/ https://www.ncbi.nlm.nih.gov/pubmed/36266272 http://dx.doi.org/10.1038/s41467-022-33385-8 |
work_keys_str_mv | AT herbstsophiea proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT vesterlundmattias proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT helmboldtalexanderj proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT jafarirozbeh proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT siavelisioannis proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT stahlmatthias proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT schitterevac proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT liebersnora proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT brinkmannberitj proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT czernilofskyfelix proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT roidertobias proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT bruchpetermartin proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT iskarmurat proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT kittaiadam proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT huangying proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT lujunyan proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT richtersarah proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT mermelekasgeorgios proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT umerhusenmuhammad proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT knollmareike proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT kolbcarolin proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT lenzeangela proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT caoxiaofang proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT osterholmcecilia proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT wahnschaffelinus proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT herlingcarmen proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT scheinostsebastian proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT ganzingermatthias proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT mansourilarry proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT kriegsmannkatharina proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT kriegsmannmark proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT anderssimon proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT zapatkamarc proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT delpoetagiovanni proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT zucchettoantonella proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT bombenriccardo proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT gatteivalter proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT dregerpeter proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT woyachjennifer proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT herlingmarco proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT mullertidowcarsten proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT rosenquistrichard proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT stilgenbauerstephan proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT zenzthorsten proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT huberwolfgang proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT tauscheugen proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT lehtiojanne proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia AT dietrichsascha proteogenomicsrefinesthemolecularclassificationofchroniclymphocyticleukemia |