Cargando…
Combining mass spectrometry and machine learning to discover bioactive peptides
Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degrad...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584923/ https://www.ncbi.nlm.nih.gov/pubmed/36266275 http://dx.doi.org/10.1038/s41467-022-34031-z |
_version_ | 1784813383183237120 |
---|---|
author | Madsen, Christian T. Refsgaard, Jan C. Teufel, Felix G. Kjærulff, Sonny K. Wang, Zhe Meng, Guangjun Jessen, Carsten Heljo, Petteri Jiang, Qunfeng Zhao, Xin Wu, Bo Zhou, Xueping Tang, Yang Jeppesen, Jacob F. Kelstrup, Christian D. Buckley, Stephen T. Tullin, Søren Nygaard-Jensen, Jan Chen, Xiaoli Zhang, Fang Olsen, Jesper V. Han, Dan Grønborg, Mads de Lichtenberg, Ulrik |
author_facet | Madsen, Christian T. Refsgaard, Jan C. Teufel, Felix G. Kjærulff, Sonny K. Wang, Zhe Meng, Guangjun Jessen, Carsten Heljo, Petteri Jiang, Qunfeng Zhao, Xin Wu, Bo Zhou, Xueping Tang, Yang Jeppesen, Jacob F. Kelstrup, Christian D. Buckley, Stephen T. Tullin, Søren Nygaard-Jensen, Jan Chen, Xiaoli Zhang, Fang Olsen, Jesper V. Han, Dan Grønborg, Mads de Lichtenberg, Ulrik |
author_sort | Madsen, Christian T. |
collection | PubMed |
description | Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development. |
format | Online Article Text |
id | pubmed-9584923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-95849232022-10-22 Combining mass spectrometry and machine learning to discover bioactive peptides Madsen, Christian T. Refsgaard, Jan C. Teufel, Felix G. Kjærulff, Sonny K. Wang, Zhe Meng, Guangjun Jessen, Carsten Heljo, Petteri Jiang, Qunfeng Zhao, Xin Wu, Bo Zhou, Xueping Tang, Yang Jeppesen, Jacob F. Kelstrup, Christian D. Buckley, Stephen T. Tullin, Søren Nygaard-Jensen, Jan Chen, Xiaoli Zhang, Fang Olsen, Jesper V. Han, Dan Grønborg, Mads de Lichtenberg, Ulrik Nat Commun Article Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development. Nature Publishing Group UK 2022-10-20 /pmc/articles/PMC9584923/ /pubmed/36266275 http://dx.doi.org/10.1038/s41467-022-34031-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Madsen, Christian T. Refsgaard, Jan C. Teufel, Felix G. Kjærulff, Sonny K. Wang, Zhe Meng, Guangjun Jessen, Carsten Heljo, Petteri Jiang, Qunfeng Zhao, Xin Wu, Bo Zhou, Xueping Tang, Yang Jeppesen, Jacob F. Kelstrup, Christian D. Buckley, Stephen T. Tullin, Søren Nygaard-Jensen, Jan Chen, Xiaoli Zhang, Fang Olsen, Jesper V. Han, Dan Grønborg, Mads de Lichtenberg, Ulrik Combining mass spectrometry and machine learning to discover bioactive peptides |
title | Combining mass spectrometry and machine learning to discover bioactive peptides |
title_full | Combining mass spectrometry and machine learning to discover bioactive peptides |
title_fullStr | Combining mass spectrometry and machine learning to discover bioactive peptides |
title_full_unstemmed | Combining mass spectrometry and machine learning to discover bioactive peptides |
title_short | Combining mass spectrometry and machine learning to discover bioactive peptides |
title_sort | combining mass spectrometry and machine learning to discover bioactive peptides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584923/ https://www.ncbi.nlm.nih.gov/pubmed/36266275 http://dx.doi.org/10.1038/s41467-022-34031-z |
work_keys_str_mv | AT madsenchristiant combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT refsgaardjanc combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT teufelfelixg combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT kjærulffsonnyk combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT wangzhe combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT mengguangjun combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT jessencarsten combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT heljopetteri combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT jiangqunfeng combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT zhaoxin combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT wubo combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT zhouxueping combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT tangyang combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT jeppesenjacobf combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT kelstrupchristiand combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT buckleystephent combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT tullinsøren combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT nygaardjensenjan combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT chenxiaoli combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT zhangfang combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT olsenjesperv combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT handan combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT grønborgmads combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides AT delichtenbergulrik combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides |