Cargando…

Combining mass spectrometry and machine learning to discover bioactive peptides

Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degrad...

Descripción completa

Detalles Bibliográficos
Autores principales: Madsen, Christian T., Refsgaard, Jan C., Teufel, Felix G., Kjærulff, Sonny K., Wang, Zhe, Meng, Guangjun, Jessen, Carsten, Heljo, Petteri, Jiang, Qunfeng, Zhao, Xin, Wu, Bo, Zhou, Xueping, Tang, Yang, Jeppesen, Jacob F., Kelstrup, Christian D., Buckley, Stephen T., Tullin, Søren, Nygaard-Jensen, Jan, Chen, Xiaoli, Zhang, Fang, Olsen, Jesper V., Han, Dan, Grønborg, Mads, de Lichtenberg, Ulrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584923/
https://www.ncbi.nlm.nih.gov/pubmed/36266275
http://dx.doi.org/10.1038/s41467-022-34031-z
_version_ 1784813383183237120
author Madsen, Christian T.
Refsgaard, Jan C.
Teufel, Felix G.
Kjærulff, Sonny K.
Wang, Zhe
Meng, Guangjun
Jessen, Carsten
Heljo, Petteri
Jiang, Qunfeng
Zhao, Xin
Wu, Bo
Zhou, Xueping
Tang, Yang
Jeppesen, Jacob F.
Kelstrup, Christian D.
Buckley, Stephen T.
Tullin, Søren
Nygaard-Jensen, Jan
Chen, Xiaoli
Zhang, Fang
Olsen, Jesper V.
Han, Dan
Grønborg, Mads
de Lichtenberg, Ulrik
author_facet Madsen, Christian T.
Refsgaard, Jan C.
Teufel, Felix G.
Kjærulff, Sonny K.
Wang, Zhe
Meng, Guangjun
Jessen, Carsten
Heljo, Petteri
Jiang, Qunfeng
Zhao, Xin
Wu, Bo
Zhou, Xueping
Tang, Yang
Jeppesen, Jacob F.
Kelstrup, Christian D.
Buckley, Stephen T.
Tullin, Søren
Nygaard-Jensen, Jan
Chen, Xiaoli
Zhang, Fang
Olsen, Jesper V.
Han, Dan
Grønborg, Mads
de Lichtenberg, Ulrik
author_sort Madsen, Christian T.
collection PubMed
description Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.
format Online
Article
Text
id pubmed-9584923
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95849232022-10-22 Combining mass spectrometry and machine learning to discover bioactive peptides Madsen, Christian T. Refsgaard, Jan C. Teufel, Felix G. Kjærulff, Sonny K. Wang, Zhe Meng, Guangjun Jessen, Carsten Heljo, Petteri Jiang, Qunfeng Zhao, Xin Wu, Bo Zhou, Xueping Tang, Yang Jeppesen, Jacob F. Kelstrup, Christian D. Buckley, Stephen T. Tullin, Søren Nygaard-Jensen, Jan Chen, Xiaoli Zhang, Fang Olsen, Jesper V. Han, Dan Grønborg, Mads de Lichtenberg, Ulrik Nat Commun Article Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development. Nature Publishing Group UK 2022-10-20 /pmc/articles/PMC9584923/ /pubmed/36266275 http://dx.doi.org/10.1038/s41467-022-34031-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Madsen, Christian T.
Refsgaard, Jan C.
Teufel, Felix G.
Kjærulff, Sonny K.
Wang, Zhe
Meng, Guangjun
Jessen, Carsten
Heljo, Petteri
Jiang, Qunfeng
Zhao, Xin
Wu, Bo
Zhou, Xueping
Tang, Yang
Jeppesen, Jacob F.
Kelstrup, Christian D.
Buckley, Stephen T.
Tullin, Søren
Nygaard-Jensen, Jan
Chen, Xiaoli
Zhang, Fang
Olsen, Jesper V.
Han, Dan
Grønborg, Mads
de Lichtenberg, Ulrik
Combining mass spectrometry and machine learning to discover bioactive peptides
title Combining mass spectrometry and machine learning to discover bioactive peptides
title_full Combining mass spectrometry and machine learning to discover bioactive peptides
title_fullStr Combining mass spectrometry and machine learning to discover bioactive peptides
title_full_unstemmed Combining mass spectrometry and machine learning to discover bioactive peptides
title_short Combining mass spectrometry and machine learning to discover bioactive peptides
title_sort combining mass spectrometry and machine learning to discover bioactive peptides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584923/
https://www.ncbi.nlm.nih.gov/pubmed/36266275
http://dx.doi.org/10.1038/s41467-022-34031-z
work_keys_str_mv AT madsenchristiant combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT refsgaardjanc combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT teufelfelixg combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT kjærulffsonnyk combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT wangzhe combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT mengguangjun combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT jessencarsten combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT heljopetteri combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT jiangqunfeng combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT zhaoxin combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT wubo combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT zhouxueping combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT tangyang combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT jeppesenjacobf combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT kelstrupchristiand combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT buckleystephent combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT tullinsøren combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT nygaardjensenjan combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT chenxiaoli combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT zhangfang combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT olsenjesperv combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT handan combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT grønborgmads combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides
AT delichtenbergulrik combiningmassspectrometryandmachinelearningtodiscoverbioactivepeptides