Cargando…

Physicochemical, structural analysis of coal discards (and sewage sludge) (co)-HTC derived biochar for a sustainable carbon economy and evaluation of the liquid by-product

This study focused on the hydrothermal treatment (HTC) of coal tailings (CT) and coal slurry (CS) and the co-hydrothermal treatment (Co-HTC) of CT, CS and sewage sludge to assess the potential for increasing the carbon content of the hydrochar produced as an enabler for a sustainable carbon economy....

Descripción completa

Detalles Bibliográficos
Autores principales: Kahilu, Gentil Mwengula, Bada, Samson, Mulopo, Jean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584926/
https://www.ncbi.nlm.nih.gov/pubmed/36266312
http://dx.doi.org/10.1038/s41598-022-22528-y
Descripción
Sumario:This study focused on the hydrothermal treatment (HTC) of coal tailings (CT) and coal slurry (CS) and the co-hydrothermal treatment (Co-HTC) of CT, CS and sewage sludge to assess the potential for increasing the carbon content of the hydrochar produced as an enabler for a sustainable carbon economy. The optimal combination methodology and response surface methodology were used to study the relationship between the important process parameters, namely temperature, pressure, residence time, the coal-to-sewage-sludge ratio, and the carbon yield of the produced hydrochar. The optimized conditions for hydrochar from coal tailing (HCT) and hydrochar from coal slurry (HCS) (150 °C, 27 bar, 95 min) increased fixed carbon from 37.31% and 53.02% to 40.31% and 57.69%, respectively, the total carbon content improved from 42.82 to 49.80% and from 61.85 to 66.90% respectively whereas the ash content of coal discards decreased from 40.32% and 24.17% to 38.3% and 20.0% when compared CT and CS respectively. Optimized Co-HTC conditions (208 °C, 22.5bars, and 360 min) for Hydrochar from the blend of coal discards and sewage sludge (HCB) increased the fixed carbon on a dry basis and the total carbon content from 38.67% and 45.64% to 58.82% and 67.0%, when compared CT and CS respectively. Carbonization yields for HCT, HCS, and HCB were, respectively, 113.58%, 102.42%, and 129.88%. HTC and Co-HTC increase the calorific value of CT and CS, to 19.33 MJ/kg, 25.79 MJ/kg, respectively. The results further show that under Co-HTC conditions, the raw biomass undergoes dehydration and decarboxylation, resulting in a decrease in hydrogen from 3.01%, 3.56%, and 3.05% to 2.87%, 2.98%, and 2.75%, and oxygen from 8.79%, 4.78, and 8.2% to 5.83%, 2.75%, and 6.00% in the resulting HCT, HCS, and HCB, respectively. HTC and Co-HTC optimal conditions increased the specific surface area of the feedstock from 6.066 m(2)/g and 6.37 m(2)/g to 11.88 m(2)/g and 14.35 m(2)/g, for CT and CS, respectively. Total pore volume rose to 0.071 cm(3)/g from 0.034 cm(3)/g, 0.048 cm(3)/g, and 0.09 cm(3)/g proving the ability of HTC to produce high-quality hydrochar from coal discards alone or in conjunction with sewage sludge as precursors for decontamination of polluted waters, soil decontamination applications, solid combustibles, energy storage, and environmental protection.