Cargando…
Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584941/ https://www.ncbi.nlm.nih.gov/pubmed/36266403 http://dx.doi.org/10.1038/s41598-022-21637-y |
_version_ | 1784813387078696960 |
---|---|
author | Guberina, Maja Herrmann, Ken Pöttgen, Christoph Guberina, Nika Hautzel, Hubertus Gauler, Thomas Ploenes, Till Umutlu, Lale Wetter, Axel Theegarten, Dirk Aigner, Clemens Eberhardt, Wilfried E. E. Metzenmacher, Martin Wiesweg, Marcel Schuler, Martin Karpf-Wissel, Rüdiger Santiago Garcia, Alina Darwiche, Kaid Stuschke, Martin |
author_facet | Guberina, Maja Herrmann, Ken Pöttgen, Christoph Guberina, Nika Hautzel, Hubertus Gauler, Thomas Ploenes, Till Umutlu, Lale Wetter, Axel Theegarten, Dirk Aigner, Clemens Eberhardt, Wilfried E. E. Metzenmacher, Martin Wiesweg, Marcel Schuler, Martin Karpf-Wissel, Rüdiger Santiago Garcia, Alina Darwiche, Kaid Stuschke, Martin |
author_sort | Guberina, Maja |
collection | PubMed |
description | Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in stage-III NSCLC. Prediction models for LN-positivity based on [(18)F]FDG-PET/CT features were built using logistic regression and machine-learning models random forest (RF) and multilayer perceptron neural network (MLP) for stage-III NSCLC before radiochemotherapy. A total of 675 LN-stations were sampled in 180 patients. The logistic and RF models identified SUV(max), the short-axis LN-diameter and the echelon of the considered LN among the most important parameters for EBUS-positivity. Adjusting the sensitivity of machine-learning classifiers to that of the expert-rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates (MCR) than the standard-report, weighting false positives and false negatives equally. Increasing the sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% for MLP/RF, respectively. PET/CT-based machine-learning classifiers can achieve a high sensitivity (94.5%) to detect EBUS-positive LNs at a low misclassification rate. As the specificity decreases rapidly above that level, a combined test of a PET/CT-based MLP/RF classifier and EBUS-TBNA is recommended for radiation target volume definition. |
format | Online Article Text |
id | pubmed-9584941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-95849412022-10-22 Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT Guberina, Maja Herrmann, Ken Pöttgen, Christoph Guberina, Nika Hautzel, Hubertus Gauler, Thomas Ploenes, Till Umutlu, Lale Wetter, Axel Theegarten, Dirk Aigner, Clemens Eberhardt, Wilfried E. E. Metzenmacher, Martin Wiesweg, Marcel Schuler, Martin Karpf-Wissel, Rüdiger Santiago Garcia, Alina Darwiche, Kaid Stuschke, Martin Sci Rep Article Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in stage-III NSCLC. Prediction models for LN-positivity based on [(18)F]FDG-PET/CT features were built using logistic regression and machine-learning models random forest (RF) and multilayer perceptron neural network (MLP) for stage-III NSCLC before radiochemotherapy. A total of 675 LN-stations were sampled in 180 patients. The logistic and RF models identified SUV(max), the short-axis LN-diameter and the echelon of the considered LN among the most important parameters for EBUS-positivity. Adjusting the sensitivity of machine-learning classifiers to that of the expert-rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates (MCR) than the standard-report, weighting false positives and false negatives equally. Increasing the sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% for MLP/RF, respectively. PET/CT-based machine-learning classifiers can achieve a high sensitivity (94.5%) to detect EBUS-positive LNs at a low misclassification rate. As the specificity decreases rapidly above that level, a combined test of a PET/CT-based MLP/RF classifier and EBUS-TBNA is recommended for radiation target volume definition. Nature Publishing Group UK 2022-10-20 /pmc/articles/PMC9584941/ /pubmed/36266403 http://dx.doi.org/10.1038/s41598-022-21637-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Guberina, Maja Herrmann, Ken Pöttgen, Christoph Guberina, Nika Hautzel, Hubertus Gauler, Thomas Ploenes, Till Umutlu, Lale Wetter, Axel Theegarten, Dirk Aigner, Clemens Eberhardt, Wilfried E. E. Metzenmacher, Martin Wiesweg, Marcel Schuler, Martin Karpf-Wissel, Rüdiger Santiago Garcia, Alina Darwiche, Kaid Stuschke, Martin Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT |
title | Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT |
title_full | Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT |
title_fullStr | Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT |
title_full_unstemmed | Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT |
title_short | Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT |
title_sort | prediction of malignant lymph nodes in nsclc by machine-learning classifiers using ebus-tbna and pet/ct |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584941/ https://www.ncbi.nlm.nih.gov/pubmed/36266403 http://dx.doi.org/10.1038/s41598-022-21637-y |
work_keys_str_mv | AT guberinamaja predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT herrmannken predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT pottgenchristoph predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT guberinanika predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT hautzelhubertus predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT gaulerthomas predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT ploenestill predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT umutlulale predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT wetteraxel predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT theegartendirk predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT aignerclemens predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT eberhardtwilfriedee predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT metzenmachermartin predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT wieswegmarcel predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT schulermartin predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT karpfwisselrudiger predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT santiagogarciaalina predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT darwichekaid predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct AT stuschkemartin predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct |