Cargando…

Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT

Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-...

Descripción completa

Detalles Bibliográficos
Autores principales: Guberina, Maja, Herrmann, Ken, Pöttgen, Christoph, Guberina, Nika, Hautzel, Hubertus, Gauler, Thomas, Ploenes, Till, Umutlu, Lale, Wetter, Axel, Theegarten, Dirk, Aigner, Clemens, Eberhardt, Wilfried E. E., Metzenmacher, Martin, Wiesweg, Marcel, Schuler, Martin, Karpf-Wissel, Rüdiger, Santiago Garcia, Alina, Darwiche, Kaid, Stuschke, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584941/
https://www.ncbi.nlm.nih.gov/pubmed/36266403
http://dx.doi.org/10.1038/s41598-022-21637-y
_version_ 1784813387078696960
author Guberina, Maja
Herrmann, Ken
Pöttgen, Christoph
Guberina, Nika
Hautzel, Hubertus
Gauler, Thomas
Ploenes, Till
Umutlu, Lale
Wetter, Axel
Theegarten, Dirk
Aigner, Clemens
Eberhardt, Wilfried E. E.
Metzenmacher, Martin
Wiesweg, Marcel
Schuler, Martin
Karpf-Wissel, Rüdiger
Santiago Garcia, Alina
Darwiche, Kaid
Stuschke, Martin
author_facet Guberina, Maja
Herrmann, Ken
Pöttgen, Christoph
Guberina, Nika
Hautzel, Hubertus
Gauler, Thomas
Ploenes, Till
Umutlu, Lale
Wetter, Axel
Theegarten, Dirk
Aigner, Clemens
Eberhardt, Wilfried E. E.
Metzenmacher, Martin
Wiesweg, Marcel
Schuler, Martin
Karpf-Wissel, Rüdiger
Santiago Garcia, Alina
Darwiche, Kaid
Stuschke, Martin
author_sort Guberina, Maja
collection PubMed
description Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in stage-III NSCLC. Prediction models for LN-positivity based on [(18)F]FDG-PET/CT features were built using logistic regression and machine-learning models random forest (RF) and multilayer perceptron neural network (MLP) for stage-III NSCLC before radiochemotherapy. A total of 675 LN-stations were sampled in 180 patients. The logistic and RF models identified SUV(max), the short-axis LN-diameter and the echelon of the considered LN among the most important parameters for EBUS-positivity. Adjusting the sensitivity of machine-learning classifiers to that of the expert-rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates (MCR) than the standard-report, weighting false positives and false negatives equally. Increasing the sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% for MLP/RF, respectively. PET/CT-based machine-learning classifiers can achieve a high sensitivity (94.5%) to detect EBUS-positive LNs at a low misclassification rate. As the specificity decreases rapidly above that level, a combined test of a PET/CT-based MLP/RF classifier and EBUS-TBNA is recommended for radiation target volume definition.
format Online
Article
Text
id pubmed-9584941
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95849412022-10-22 Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT Guberina, Maja Herrmann, Ken Pöttgen, Christoph Guberina, Nika Hautzel, Hubertus Gauler, Thomas Ploenes, Till Umutlu, Lale Wetter, Axel Theegarten, Dirk Aigner, Clemens Eberhardt, Wilfried E. E. Metzenmacher, Martin Wiesweg, Marcel Schuler, Martin Karpf-Wissel, Rüdiger Santiago Garcia, Alina Darwiche, Kaid Stuschke, Martin Sci Rep Article Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in stage-III NSCLC. Prediction models for LN-positivity based on [(18)F]FDG-PET/CT features were built using logistic regression and machine-learning models random forest (RF) and multilayer perceptron neural network (MLP) for stage-III NSCLC before radiochemotherapy. A total of 675 LN-stations were sampled in 180 patients. The logistic and RF models identified SUV(max), the short-axis LN-diameter and the echelon of the considered LN among the most important parameters for EBUS-positivity. Adjusting the sensitivity of machine-learning classifiers to that of the expert-rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates (MCR) than the standard-report, weighting false positives and false negatives equally. Increasing the sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% for MLP/RF, respectively. PET/CT-based machine-learning classifiers can achieve a high sensitivity (94.5%) to detect EBUS-positive LNs at a low misclassification rate. As the specificity decreases rapidly above that level, a combined test of a PET/CT-based MLP/RF classifier and EBUS-TBNA is recommended for radiation target volume definition. Nature Publishing Group UK 2022-10-20 /pmc/articles/PMC9584941/ /pubmed/36266403 http://dx.doi.org/10.1038/s41598-022-21637-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Guberina, Maja
Herrmann, Ken
Pöttgen, Christoph
Guberina, Nika
Hautzel, Hubertus
Gauler, Thomas
Ploenes, Till
Umutlu, Lale
Wetter, Axel
Theegarten, Dirk
Aigner, Clemens
Eberhardt, Wilfried E. E.
Metzenmacher, Martin
Wiesweg, Marcel
Schuler, Martin
Karpf-Wissel, Rüdiger
Santiago Garcia, Alina
Darwiche, Kaid
Stuschke, Martin
Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
title Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
title_full Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
title_fullStr Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
title_full_unstemmed Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
title_short Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT
title_sort prediction of malignant lymph nodes in nsclc by machine-learning classifiers using ebus-tbna and pet/ct
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584941/
https://www.ncbi.nlm.nih.gov/pubmed/36266403
http://dx.doi.org/10.1038/s41598-022-21637-y
work_keys_str_mv AT guberinamaja predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT herrmannken predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT pottgenchristoph predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT guberinanika predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT hautzelhubertus predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT gaulerthomas predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT ploenestill predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT umutlulale predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT wetteraxel predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT theegartendirk predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT aignerclemens predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT eberhardtwilfriedee predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT metzenmachermartin predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT wieswegmarcel predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT schulermartin predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT karpfwisselrudiger predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT santiagogarciaalina predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT darwichekaid predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct
AT stuschkemartin predictionofmalignantlymphnodesinnsclcbymachinelearningclassifiersusingebustbnaandpetct