Cargando…
Embedding cognitive framework with self-attention for interpretable knowledge tracing
Recently, deep neural network-based cognitive models such as deep knowledge tracing have been introduced into the field of learning analytics and educational data mining. Despite an accurate predictive performance of such models, it is challenging to interpret their behaviors and obtain an intuitive...
Autores principales: | Pu, Yanjun, Wu, Wenjun, Peng, Tianhao, Liu, Fang, Liang, Yu, Yu, Xin, Chen, Ruibo, Feng, Pu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584970/ https://www.ncbi.nlm.nih.gov/pubmed/36266397 http://dx.doi.org/10.1038/s41598-022-22539-9 |
Ejemplares similares
-
HELP-DKT: an interpretable cognitive model of how students learn programming based on deep knowledge tracing
por: Liang, Yu, et al.
Publicado: (2022) -
Learning from Interpretable Analysis: Attention-Based Knowledge Tracing
por: Zhu, Jia, et al.
Publicado: (2020) -
Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map
por: Song, Bofan, et al.
Publicado: (2023) -
Towards Interpretable Deep Learning Models for Knowledge Tracing
por: Lu, Yu, et al.
Publicado: (2020) -
Deep Knowledge Tracing with Transformers
por: Pu, Shi, et al.
Publicado: (2020)