Cargando…
Trainable joint bilateral filters for enhanced prediction stability in low-dose CT
Low-dose computed tomography (CT) denoising algorithms aim to enable reduced patient dose in routine CT acquisitions while maintaining high image quality. Recently, deep learning (DL)-based methods were introduced, outperforming conventional denoising algorithms on this task due to their high model...
Autores principales: | Wagner, Fabian, Thies, Mareike, Denzinger, Felix, Gu, Mingxuan, Patwari, Mayank, Ploner, Stefan, Maul, Noah, Pfaff, Laura, Huang, Yixing, Maier, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585057/ https://www.ncbi.nlm.nih.gov/pubmed/36266416 http://dx.doi.org/10.1038/s41598-022-22530-4 |
Ejemplares similares
-
Trainable FIR-order statistic hybrid filters
por: Inkinen, S J, et al.
Publicado: (1995) -
Trainable hybrid filter structures in particle detector readout systems
por: Inkinen, S J, et al.
Publicado: (1996) -
Issues on Trainability
por: Radak, Zsolt, et al.
Publicado: (2022) -
Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation
por: Badawi, Sufian A., et al.
Publicado: (2018) -
Trainable Quaternion Extended Kalman Filter with Multi-Head Attention for Dead Reckoning in Autonomous Ground Vehicles
por: Milam, Gary, et al.
Publicado: (2022)