Cargando…

Micro-expression recognition model based on TV-L1 optical flow method and improved ShuffleNet

Micro-expression is a kind of facial action that reflects the real emotional state of a person, and has high objectivity in emotion detection. Therefore, micro-expression recognition has become one of the research hotspots in the field of computer vision in recent years. Research with neural network...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yanju, Li, Yange, Yi, Xinhan, Hu, Zuojin, Zhang, Huiyu, Liu, Yanzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585088/
https://www.ncbi.nlm.nih.gov/pubmed/36266408
http://dx.doi.org/10.1038/s41598-022-21738-8
Descripción
Sumario:Micro-expression is a kind of facial action that reflects the real emotional state of a person, and has high objectivity in emotion detection. Therefore, micro-expression recognition has become one of the research hotspots in the field of computer vision in recent years. Research with neural networks with convolutional structure is still one of the main methods of recognition. This method has the advantage of high operational efficiency and low computational complexity, but the disadvantage is its localization of feature extraction. In recent years, there are more and more plug-and-play self-attentive modules being used in convolutional neural networks to improve the ability of the model to extract global features of the samples. In this paper, we propose the ShuffleNet model combined with a miniature self-attentive module, which has only 1.53 million training parameters. First, the start frame and vertex frame of each sample will be taken out, and its TV-L1 optical flow features will be extracted. After that, the optical flow features are fed into the model for pre-training. Finally, the weights obtained from the pre-training are used as initialization weights for the model to train the complete micro-expression samples and classify them by the SVM classifier. To evaluate the effectiveness of the method, it was trained and tested on a composite dataset consisting of CASMEII, SMIC, and SAMM, and the model achieved competitive results compared to state-of-the-art methods through cross-validation of leave-one-out subjects.