Cargando…
A scheme to evaluate structural alerts to predict toxicity – Assessing confidence by characterising uncertainties
Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules which, when coded as structural alerts, are essential tools in in silico toxicology. Whilst other in silico methods have approaches for their evaluation, there is no formal process to assess the conf...
Autores principales: | Cronin, Mark T.D., Bauer, Franklin J., Bonnell, Mark, Campos, Bruno, Ebbrell, David J., Firman, James W., Gutsell, Steve, Hodges, Geoff, Patlewicz, Grace, Sapounidou, Maria, Spînu, Nicoleta, Thomas, Paul C., Worth, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585125/ https://www.ncbi.nlm.nih.gov/pubmed/36041585 http://dx.doi.org/10.1016/j.yrtph.2022.105249 |
Ejemplares similares
-
Construction
of an In Silico Structural Profiling
Tool Facilitating Mechanistically Grounded Classification of Aquatic
Toxicants
por: Firman, James W., et al.
Publicado: (2022) -
A matter of trust: Learning lessons about causality will make qAOPs credible
por: Spînu, Nicoleta, et al.
Publicado: (2022) -
In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR
por: Pawar, Gopal, et al.
Publicado: (2019) -
Quantitative adverse outcome pathway (qAOP) models for toxicity prediction
por: Spinu, Nicoleta, et al.
Publicado: (2020) -
Improved Algal Toxicity Test System for Robust Omics-Driven Mode-of-Action Discovery in Chlamydomonas reinhardtii
por: Schade, Stefan, et al.
Publicado: (2019)