Cargando…
Self-organized Learning from Synthetic and Real-World Data for a Humanoid Exercise Robot
We propose a neural learning approach for a humanoid exercise robot that can automatically analyze and correct physical exercises. Such an exercise robot should be able to train many different human partners over time and thus requires the ability for lifelong learning. To this end, we develop a mod...
Autores principales: | Duczek, Nicolas, Kerzel, Matthias, Allgeuer , Philipp, Wermter , Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585214/ https://www.ncbi.nlm.nih.gov/pubmed/36274912 http://dx.doi.org/10.3389/frobt.2022.669719 |
Ejemplares similares
-
Editorial: Humanoid Robots for Real-World Applications
por: Kanehiro, Fumio, et al.
Publicado: (2022) -
Editorial: Consciousness in Humanoid Robots
por: Chella, Antonio, et al.
Publicado: (2019) -
Versatile Locomotion Planning and Control for Humanoid Robots
por: Ahn, Junhyeok, et al.
Publicado: (2021) -
Crossmodal Pattern Discrimination in Humans and Robots: A Visuo-Tactile Case Study
por: Higgen, Focko L., et al.
Publicado: (2020) -
Benchmarking the HRP-2 Humanoid Robot During Locomotion
por: Stasse, Olivier, et al.
Publicado: (2018)