Cargando…
nnU-Net Deep Learning Method for Segmenting Parenchyma and Determining Liver Volume From Computed Tomography Images
BACKGROUND: Recipient donor matching in liver transplantation can require precise estimations of liver volume. Currently utilized demographic-based organ volume estimates are imprecise and nonspecific. Manual image organ annotation from medical imaging is effective; however, this process is cumberso...
Autores principales: | Pettit, Rowland W., Marlatt, Britton B., Corr, Stuart J., Havelka, Jim, Rana, Abbas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585534/ https://www.ncbi.nlm.nih.gov/pubmed/36275876 http://dx.doi.org/10.1097/AS9.0000000000000155 |
Ejemplares similares
-
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net
por: Hu, Yifan, et al.
Publicado: (2023) -
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
Lifelong nnU-Net: a framework for standardized medical continual learning
por: González, Camila, et al.
Publicado: (2023) -
Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models
por: Ferrante, Matteo, et al.
Publicado: (2022) -
An open-source nnU-net algorithm for automatic segmentation of MRI scans in the male pelvis for adaptive radiotherapy
por: Lorenzen, Ebbe Laugaard, et al.
Publicado: (2023)