Cargando…
PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,5...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585761/ https://www.ncbi.nlm.nih.gov/pubmed/36271417 http://dx.doi.org/10.1186/s13058-022-01567-3 |
_version_ | 1784813561504071680 |
---|---|
author | Giardiello, Daniele Hooning, Maartje J. Hauptmann, Michael Keeman, Renske Heemskerk-Gerritsen, B. A. M. Becher, Heiko Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Camp, Nicola J. Czene, Kamila Devilee, Peter Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine D. Flyger, Henrik García-Closas, Montserrat Haiman, Christopher A. Hamann, Ute Hopper, John L. Jakubowska, Anna Leeuwen, Floor E. Lindblom, Annika Lubiński, Jan Margolin, Sara Martinez, Maria Elena Nevanlinna, Heli Nevelsteen, Ines Pelders, Saskia Pharoah, Paul D. P. Siesling, Sabine Southey, Melissa C. van der Hout, Annemieke H. van Hest, Liselotte P. Chang-Claude, Jenny Hall, Per Easton, Douglas F. Steyerberg, Ewout W. Schmidt, Marjanka K. |
author_facet | Giardiello, Daniele Hooning, Maartje J. Hauptmann, Michael Keeman, Renske Heemskerk-Gerritsen, B. A. M. Becher, Heiko Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Camp, Nicola J. Czene, Kamila Devilee, Peter Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine D. Flyger, Henrik García-Closas, Montserrat Haiman, Christopher A. Hamann, Ute Hopper, John L. Jakubowska, Anna Leeuwen, Floor E. Lindblom, Annika Lubiński, Jan Margolin, Sara Martinez, Maria Elena Nevanlinna, Heli Nevelsteen, Ines Pelders, Saskia Pharoah, Paul D. P. Siesling, Sabine Southey, Melissa C. van der Hout, Annemieke H. van Hest, Liselotte P. Chang-Claude, Jenny Hall, Per Easton, Douglas F. Steyerberg, Ewout W. Schmidt, Marjanka K. |
author_sort | Giardiello, Daniele |
collection | PubMed |
description | BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models. RESULTS: The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56–0.74) versus 0.63 (95%PI 0.54–0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34–2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01567-3. |
format | Online Article Text |
id | pubmed-9585761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-95857612022-10-22 PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients Giardiello, Daniele Hooning, Maartje J. Hauptmann, Michael Keeman, Renske Heemskerk-Gerritsen, B. A. M. Becher, Heiko Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Camp, Nicola J. Czene, Kamila Devilee, Peter Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine D. Flyger, Henrik García-Closas, Montserrat Haiman, Christopher A. Hamann, Ute Hopper, John L. Jakubowska, Anna Leeuwen, Floor E. Lindblom, Annika Lubiński, Jan Margolin, Sara Martinez, Maria Elena Nevanlinna, Heli Nevelsteen, Ines Pelders, Saskia Pharoah, Paul D. P. Siesling, Sabine Southey, Melissa C. van der Hout, Annemieke H. van Hest, Liselotte P. Chang-Claude, Jenny Hall, Per Easton, Douglas F. Steyerberg, Ewout W. Schmidt, Marjanka K. Breast Cancer Res Research BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models. RESULTS: The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56–0.74) versus 0.63 (95%PI 0.54–0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34–2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01567-3. BioMed Central 2022-10-21 2022 /pmc/articles/PMC9585761/ /pubmed/36271417 http://dx.doi.org/10.1186/s13058-022-01567-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Giardiello, Daniele Hooning, Maartje J. Hauptmann, Michael Keeman, Renske Heemskerk-Gerritsen, B. A. M. Becher, Heiko Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Camp, Nicola J. Czene, Kamila Devilee, Peter Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine D. Flyger, Henrik García-Closas, Montserrat Haiman, Christopher A. Hamann, Ute Hopper, John L. Jakubowska, Anna Leeuwen, Floor E. Lindblom, Annika Lubiński, Jan Margolin, Sara Martinez, Maria Elena Nevanlinna, Heli Nevelsteen, Ines Pelders, Saskia Pharoah, Paul D. P. Siesling, Sabine Southey, Melissa C. van der Hout, Annemieke H. van Hest, Liselotte P. Chang-Claude, Jenny Hall, Per Easton, Douglas F. Steyerberg, Ewout W. Schmidt, Marjanka K. PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
title | PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
title_full | PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
title_fullStr | PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
title_full_unstemmed | PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
title_short | PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
title_sort | predictcbc-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585761/ https://www.ncbi.nlm.nih.gov/pubmed/36271417 http://dx.doi.org/10.1186/s13058-022-01567-3 |
work_keys_str_mv | AT giardiellodaniele predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT hooningmaartjej predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT hauptmannmichael predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT keemanrenske predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT heemskerkgerritsenbam predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT becherheiko predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT blomqvistcarl predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT bojesenstige predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT bollamanjeetk predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT campnicolaj predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT czenekamila predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT devileepeter predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT ecclesdianam predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT faschingpetera predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT figueroajonined predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT flygerhenrik predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT garciaclosasmontserrat predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT haimanchristophera predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT hamannute predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT hopperjohnl predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT jakubowskaanna predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT leeuwenfloore predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT lindblomannika predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT lubinskijan predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT margolinsara predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT martinezmariaelena predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT nevanlinnaheli predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT nevelsteenines predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT pelderssaskia predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT pharoahpauldp predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT sieslingsabine predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT southeymelissac predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT vanderhoutannemiekeh predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT vanhestliselottep predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT changclaudejenny predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT hallper predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT eastondouglasf predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT steyerbergewoutw predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients AT schmidtmarjankak predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients |