Cargando…

PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients

BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,5...

Descripción completa

Detalles Bibliográficos
Autores principales: Giardiello, Daniele, Hooning, Maartje J., Hauptmann, Michael, Keeman, Renske, Heemskerk-Gerritsen, B. A. M., Becher, Heiko, Blomqvist, Carl, Bojesen, Stig E., Bolla, Manjeet K., Camp, Nicola J., Czene, Kamila, Devilee, Peter, Eccles, Diana M., Fasching, Peter A., Figueroa, Jonine D., Flyger, Henrik, García-Closas, Montserrat, Haiman, Christopher A., Hamann, Ute, Hopper, John L., Jakubowska, Anna, Leeuwen, Floor E., Lindblom, Annika, Lubiński, Jan, Margolin, Sara, Martinez, Maria Elena, Nevanlinna, Heli, Nevelsteen, Ines, Pelders, Saskia, Pharoah, Paul D. P., Siesling, Sabine, Southey, Melissa C., van der Hout, Annemieke H., van Hest, Liselotte P., Chang-Claude, Jenny, Hall, Per, Easton, Douglas F., Steyerberg, Ewout W., Schmidt, Marjanka K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585761/
https://www.ncbi.nlm.nih.gov/pubmed/36271417
http://dx.doi.org/10.1186/s13058-022-01567-3
_version_ 1784813561504071680
author Giardiello, Daniele
Hooning, Maartje J.
Hauptmann, Michael
Keeman, Renske
Heemskerk-Gerritsen, B. A. M.
Becher, Heiko
Blomqvist, Carl
Bojesen, Stig E.
Bolla, Manjeet K.
Camp, Nicola J.
Czene, Kamila
Devilee, Peter
Eccles, Diana M.
Fasching, Peter A.
Figueroa, Jonine D.
Flyger, Henrik
García-Closas, Montserrat
Haiman, Christopher A.
Hamann, Ute
Hopper, John L.
Jakubowska, Anna
Leeuwen, Floor E.
Lindblom, Annika
Lubiński, Jan
Margolin, Sara
Martinez, Maria Elena
Nevanlinna, Heli
Nevelsteen, Ines
Pelders, Saskia
Pharoah, Paul D. P.
Siesling, Sabine
Southey, Melissa C.
van der Hout, Annemieke H.
van Hest, Liselotte P.
Chang-Claude, Jenny
Hall, Per
Easton, Douglas F.
Steyerberg, Ewout W.
Schmidt, Marjanka K.
author_facet Giardiello, Daniele
Hooning, Maartje J.
Hauptmann, Michael
Keeman, Renske
Heemskerk-Gerritsen, B. A. M.
Becher, Heiko
Blomqvist, Carl
Bojesen, Stig E.
Bolla, Manjeet K.
Camp, Nicola J.
Czene, Kamila
Devilee, Peter
Eccles, Diana M.
Fasching, Peter A.
Figueroa, Jonine D.
Flyger, Henrik
García-Closas, Montserrat
Haiman, Christopher A.
Hamann, Ute
Hopper, John L.
Jakubowska, Anna
Leeuwen, Floor E.
Lindblom, Annika
Lubiński, Jan
Margolin, Sara
Martinez, Maria Elena
Nevanlinna, Heli
Nevelsteen, Ines
Pelders, Saskia
Pharoah, Paul D. P.
Siesling, Sabine
Southey, Melissa C.
van der Hout, Annemieke H.
van Hest, Liselotte P.
Chang-Claude, Jenny
Hall, Per
Easton, Douglas F.
Steyerberg, Ewout W.
Schmidt, Marjanka K.
author_sort Giardiello, Daniele
collection PubMed
description BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models. RESULTS: The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56–0.74) versus 0.63 (95%PI 0.54–0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34–2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01567-3.
format Online
Article
Text
id pubmed-9585761
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-95857612022-10-22 PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients Giardiello, Daniele Hooning, Maartje J. Hauptmann, Michael Keeman, Renske Heemskerk-Gerritsen, B. A. M. Becher, Heiko Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Camp, Nicola J. Czene, Kamila Devilee, Peter Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine D. Flyger, Henrik García-Closas, Montserrat Haiman, Christopher A. Hamann, Ute Hopper, John L. Jakubowska, Anna Leeuwen, Floor E. Lindblom, Annika Lubiński, Jan Margolin, Sara Martinez, Maria Elena Nevanlinna, Heli Nevelsteen, Ines Pelders, Saskia Pharoah, Paul D. P. Siesling, Sabine Southey, Melissa C. van der Hout, Annemieke H. van Hest, Liselotte P. Chang-Claude, Jenny Hall, Per Easton, Douglas F. Steyerberg, Ewout W. Schmidt, Marjanka K. Breast Cancer Res Research BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models. RESULTS: The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56–0.74) versus 0.63 (95%PI 0.54–0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34–2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01567-3. BioMed Central 2022-10-21 2022 /pmc/articles/PMC9585761/ /pubmed/36271417 http://dx.doi.org/10.1186/s13058-022-01567-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Giardiello, Daniele
Hooning, Maartje J.
Hauptmann, Michael
Keeman, Renske
Heemskerk-Gerritsen, B. A. M.
Becher, Heiko
Blomqvist, Carl
Bojesen, Stig E.
Bolla, Manjeet K.
Camp, Nicola J.
Czene, Kamila
Devilee, Peter
Eccles, Diana M.
Fasching, Peter A.
Figueroa, Jonine D.
Flyger, Henrik
García-Closas, Montserrat
Haiman, Christopher A.
Hamann, Ute
Hopper, John L.
Jakubowska, Anna
Leeuwen, Floor E.
Lindblom, Annika
Lubiński, Jan
Margolin, Sara
Martinez, Maria Elena
Nevanlinna, Heli
Nevelsteen, Ines
Pelders, Saskia
Pharoah, Paul D. P.
Siesling, Sabine
Southey, Melissa C.
van der Hout, Annemieke H.
van Hest, Liselotte P.
Chang-Claude, Jenny
Hall, Per
Easton, Douglas F.
Steyerberg, Ewout W.
Schmidt, Marjanka K.
PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
title PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
title_full PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
title_fullStr PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
title_full_unstemmed PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
title_short PredictCBC-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
title_sort predictcbc-2.0: a contralateral breast cancer risk prediction model developed and validated in ~ 200,000 patients
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585761/
https://www.ncbi.nlm.nih.gov/pubmed/36271417
http://dx.doi.org/10.1186/s13058-022-01567-3
work_keys_str_mv AT giardiellodaniele predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT hooningmaartjej predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT hauptmannmichael predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT keemanrenske predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT heemskerkgerritsenbam predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT becherheiko predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT blomqvistcarl predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT bojesenstige predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT bollamanjeetk predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT campnicolaj predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT czenekamila predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT devileepeter predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT ecclesdianam predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT faschingpetera predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT figueroajonined predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT flygerhenrik predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT garciaclosasmontserrat predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT haimanchristophera predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT hamannute predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT hopperjohnl predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT jakubowskaanna predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT leeuwenfloore predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT lindblomannika predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT lubinskijan predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT margolinsara predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT martinezmariaelena predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT nevanlinnaheli predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT nevelsteenines predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT pelderssaskia predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT pharoahpauldp predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT sieslingsabine predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT southeymelissac predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT vanderhoutannemiekeh predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT vanhestliselottep predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT changclaudejenny predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT hallper predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT eastondouglasf predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT steyerbergewoutw predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients
AT schmidtmarjankak predictcbc20acontralateralbreastcancerriskpredictionmodeldevelopedandvalidatedin200000patients