Cargando…

Performance of BioFire Blood Culture Identification 2 Panel (BCID2) for the detection of bloodstream pathogens and their associated resistance markers: a systematic review and meta-analysis of diagnostic test accuracy studies

BACKGROUND: Early identification of bloodstream pathogens and their associated antimicrobial resistance may shorten time to optimal therapy in patients with sepsis. The BioFire Blood Culture Identification 2 Panel (BCID2) is a novel multiplex PCR detecting 43 targets directly from positive blood cul...

Descripción completa

Detalles Bibliográficos
Autores principales: Peri, Anna Maria, Ling, Weiping, Furuya-Kanamori, Luis, Harris, Patrick N. A., Paterson, David L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585790/
https://www.ncbi.nlm.nih.gov/pubmed/36266641
http://dx.doi.org/10.1186/s12879-022-07772-x
Descripción
Sumario:BACKGROUND: Early identification of bloodstream pathogens and their associated antimicrobial resistance may shorten time to optimal therapy in patients with sepsis. The BioFire Blood Culture Identification 2 Panel (BCID2) is a novel multiplex PCR detecting 43 targets directly from positive blood cultures, reducing turnaround times. METHODS: We have performed a systematic review and meta-analysis of diagnostic test accuracy studies to assess the BCID2 performance for pathogen identification and resistance markers detection compared to gold standard culture-based methods (including phenotypic and/or genotypic characterization). RESULTS: Nine studies were identified reporting data to build 2 × 2 tables for each BCID2 target, including 2005 blood cultures. The pooled specificity of the assay was excellent (> 97%) across most subgroups of targets investigated, with a slightly broader confidence interval for S. epidermidis (98.1%, 95% CI 93.1 to 99.5). Pooled sensitivity was also high for the major determinants of bloodstream infection, including Enterobacterales (98.2%, 95% CI 96.3 to 99.1), S. aureus (96.0%, 95% CI 90.4 to 98.4), Streptococcus spp. (96.7%, 95% CI 92.8 to 98.5), P. aeruginosa (92.7%, 95% CI 83.1 to 97.0), E. faecalis (92.3%, 95% CI 83.5 to 96.6), as well as bla(CTX-M) (94.9, 95% CI 85.7 to 98.3), carbapenemases (94.9%, 95% CI 83.4 to 98.6) and mecA/C & MREJ (93.9%, 95% CI 83.0 to 98.0). Sensitivity for less common targets was slightly lower, possibly due to their under-representation in the included studies. CONCLUSIONS: BCID2 showed good performance for detecting major determinants of bloodstream infection and could support early antimicrobial treatment, especially for ESBL or carbapenemase-producing Gram-negative bacilli and methicillin-resistant S. aureus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-022-07772-x.