Cargando…

Preoperative planning using virtual reality for percutaneous transseptal valve-in-valve transcatheter mitral valve replacement: a case report

BACKGROUND: Virtual reality (VR) technology has been implemented as a pre-procedural planning tool for cardiovascular interventions to enable detailed evaluation of patient anatomy from different vantage points. Here, we employed a VR platform to preoperatively plan for percutaneous valve-in-valve t...

Descripción completa

Detalles Bibliográficos
Autores principales: Castellanos, Jorge M, Barbery, Daniela, Yefimov, Alex, Dang, Phuong N
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585901/
https://www.ncbi.nlm.nih.gov/pubmed/36285227
http://dx.doi.org/10.1093/ehjcr/ytac384
Descripción
Sumario:BACKGROUND: Virtual reality (VR) technology has been implemented as a pre-procedural planning tool for cardiovascular interventions to enable detailed evaluation of patient anatomy from different vantage points. Here, we employed a VR platform to preoperatively plan for percutaneous valve-in-valve transcatheter mitral replacement (ViV-TMVR) in a prohibitive surgical candidate. CASE SUMMARY: An 85-year-old male with a history of two prior sternotomies for bioprosthetic aortic valve (AV) and mitral valve (MV) 31 mm Medtronic Mosaic bioprosthesis presented with severe mitral regurgitation from a degenerative bioprosthetic MV. The patient was deemed a prohibitive surgical candidate for a third sternotomy and instead was recommended a percutaneous transseptal ViV-TMVR. An electrocardiogram-gated chest computed tomography (CT) provided a neo-left-ventricular outflow tract (neo-LVOT) of 1.89 cm(2). This CT was reconstructed to create a 360° VR (360VR) model. A 29 mm SAPIEN three bioprosthetic valve, selected based on the already implanted MV, was placed inside the bioprosthetic MV and analysed in VR at different angles to ensure it would not obstruct the LVOT. The neo-LVOT measured in VR was 3.02 cm(2), which would allow for sufficient blood flow without significant obstruction from the new SAPIEN three bioprosthetic valve. The patient tolerated the procedure well. DISCUSSION: This case demonstrates the utility of VR as a pre-procedural planning tool for interventional cardiology procedures. Preoperative planning in VR alleviated concerns regarding obstruction of the neo-LVOT and helped confirm safe implantation by clearly showing the three-dimensional spatial relationship between the implants and surrounding patient anatomy.