Cargando…
A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19–related LD. In this study, we performed proteomic analys...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585965/ https://www.ncbi.nlm.nih.gov/pubmed/36261228 http://dx.doi.org/10.26508/lsa.202201576 |
_version_ | 1784813605747687424 |
---|---|
author | Bao, Jianfeng Liu, Shourong Liang, Xiao Wang, Congcong Cao, Lili Li, Zhaoyi Wei, Furong Fu, Ai Shi, Yingqiu Shen, Bo Zhu, Xiaoli Zhao, Yuge Liu, Hong Miao, Liangbin Wang, Yi Liang, Shuang Wu, Linyan Huang, Jinsong Guo, Tiannan Liu, Fang |
author_facet | Bao, Jianfeng Liu, Shourong Liang, Xiao Wang, Congcong Cao, Lili Li, Zhaoyi Wei, Furong Fu, Ai Shi, Yingqiu Shen, Bo Zhu, Xiaoli Zhao, Yuge Liu, Hong Miao, Liangbin Wang, Yi Liang, Shuang Wu, Linyan Huang, Jinsong Guo, Tiannan Liu, Fang |
author_sort | Bao, Jianfeng |
collection | PubMed |
description | Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19–related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60–0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0–73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/. |
format | Online Article Text |
id | pubmed-9585965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-95859652022-10-22 A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters Bao, Jianfeng Liu, Shourong Liang, Xiao Wang, Congcong Cao, Lili Li, Zhaoyi Wei, Furong Fu, Ai Shi, Yingqiu Shen, Bo Zhu, Xiaoli Zhao, Yuge Liu, Hong Miao, Liangbin Wang, Yi Liang, Shuang Wu, Linyan Huang, Jinsong Guo, Tiannan Liu, Fang Life Sci Alliance Research Articles Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19–related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60–0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0–73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/. Life Science Alliance LLC 2022-10-19 /pmc/articles/PMC9585965/ /pubmed/36261228 http://dx.doi.org/10.26508/lsa.202201576 Text en © 2022 Bao et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Bao, Jianfeng Liu, Shourong Liang, Xiao Wang, Congcong Cao, Lili Li, Zhaoyi Wei, Furong Fu, Ai Shi, Yingqiu Shen, Bo Zhu, Xiaoli Zhao, Yuge Liu, Hong Miao, Liangbin Wang, Yi Liang, Shuang Wu, Linyan Huang, Jinsong Guo, Tiannan Liu, Fang A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters |
title | A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters |
title_full | A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters |
title_fullStr | A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters |
title_full_unstemmed | A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters |
title_short | A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters |
title_sort | prediction model for covid-19 liver dysfunction in patients with normal hepatic biochemical parameters |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585965/ https://www.ncbi.nlm.nih.gov/pubmed/36261228 http://dx.doi.org/10.26508/lsa.202201576 |
work_keys_str_mv | AT baojianfeng apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liushourong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liangxiao apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT wangcongcong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT caolili apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT lizhaoyi apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT weifurong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT fuai apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT shiyingqiu apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT shenbo apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT zhuxiaoli apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT zhaoyuge apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liuhong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT miaoliangbin apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT wangyi apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liangshuang apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT wulinyan apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT huangjinsong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT guotiannan apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liufang apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT baojianfeng predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liushourong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liangxiao predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT wangcongcong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT caolili predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT lizhaoyi predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT weifurong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT fuai predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT shiyingqiu predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT shenbo predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT zhuxiaoli predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT zhaoyuge predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liuhong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT miaoliangbin predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT wangyi predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liangshuang predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT wulinyan predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT huangjinsong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT guotiannan predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters AT liufang predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters |