Cargando…

A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters

Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19–related LD. In this study, we performed proteomic analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Jianfeng, Liu, Shourong, Liang, Xiao, Wang, Congcong, Cao, Lili, Li, Zhaoyi, Wei, Furong, Fu, Ai, Shi, Yingqiu, Shen, Bo, Zhu, Xiaoli, Zhao, Yuge, Liu, Hong, Miao, Liangbin, Wang, Yi, Liang, Shuang, Wu, Linyan, Huang, Jinsong, Guo, Tiannan, Liu, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585965/
https://www.ncbi.nlm.nih.gov/pubmed/36261228
http://dx.doi.org/10.26508/lsa.202201576
_version_ 1784813605747687424
author Bao, Jianfeng
Liu, Shourong
Liang, Xiao
Wang, Congcong
Cao, Lili
Li, Zhaoyi
Wei, Furong
Fu, Ai
Shi, Yingqiu
Shen, Bo
Zhu, Xiaoli
Zhao, Yuge
Liu, Hong
Miao, Liangbin
Wang, Yi
Liang, Shuang
Wu, Linyan
Huang, Jinsong
Guo, Tiannan
Liu, Fang
author_facet Bao, Jianfeng
Liu, Shourong
Liang, Xiao
Wang, Congcong
Cao, Lili
Li, Zhaoyi
Wei, Furong
Fu, Ai
Shi, Yingqiu
Shen, Bo
Zhu, Xiaoli
Zhao, Yuge
Liu, Hong
Miao, Liangbin
Wang, Yi
Liang, Shuang
Wu, Linyan
Huang, Jinsong
Guo, Tiannan
Liu, Fang
author_sort Bao, Jianfeng
collection PubMed
description Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19–related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60–0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0–73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/.
format Online
Article
Text
id pubmed-9585965
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Life Science Alliance LLC
record_format MEDLINE/PubMed
spelling pubmed-95859652022-10-22 A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters Bao, Jianfeng Liu, Shourong Liang, Xiao Wang, Congcong Cao, Lili Li, Zhaoyi Wei, Furong Fu, Ai Shi, Yingqiu Shen, Bo Zhu, Xiaoli Zhao, Yuge Liu, Hong Miao, Liangbin Wang, Yi Liang, Shuang Wu, Linyan Huang, Jinsong Guo, Tiannan Liu, Fang Life Sci Alliance Research Articles Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19–related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60–0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0–73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/. Life Science Alliance LLC 2022-10-19 /pmc/articles/PMC9585965/ /pubmed/36261228 http://dx.doi.org/10.26508/lsa.202201576 Text en © 2022 Bao et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Articles
Bao, Jianfeng
Liu, Shourong
Liang, Xiao
Wang, Congcong
Cao, Lili
Li, Zhaoyi
Wei, Furong
Fu, Ai
Shi, Yingqiu
Shen, Bo
Zhu, Xiaoli
Zhao, Yuge
Liu, Hong
Miao, Liangbin
Wang, Yi
Liang, Shuang
Wu, Linyan
Huang, Jinsong
Guo, Tiannan
Liu, Fang
A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
title A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
title_full A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
title_fullStr A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
title_full_unstemmed A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
title_short A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters
title_sort prediction model for covid-19 liver dysfunction in patients with normal hepatic biochemical parameters
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585965/
https://www.ncbi.nlm.nih.gov/pubmed/36261228
http://dx.doi.org/10.26508/lsa.202201576
work_keys_str_mv AT baojianfeng apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liushourong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liangxiao apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT wangcongcong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT caolili apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT lizhaoyi apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT weifurong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT fuai apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT shiyingqiu apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT shenbo apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT zhuxiaoli apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT zhaoyuge apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liuhong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT miaoliangbin apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT wangyi apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liangshuang apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT wulinyan apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT huangjinsong apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT guotiannan apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liufang apredictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT baojianfeng predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liushourong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liangxiao predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT wangcongcong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT caolili predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT lizhaoyi predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT weifurong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT fuai predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT shiyingqiu predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT shenbo predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT zhuxiaoli predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT zhaoyuge predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liuhong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT miaoliangbin predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT wangyi predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liangshuang predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT wulinyan predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT huangjinsong predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT guotiannan predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters
AT liufang predictionmodelforcovid19liverdysfunctioninpatientswithnormalhepaticbiochemicalparameters