Cargando…
Clinical associations and genetic interactions of oncogenic BRAF alleles
BRAF is a serine/threonine-specific protein kinase that regulates the MAPK/ERK signaling pathway, and mutations in the BRAF gene are considered oncogenic drivers in diverse types of cancer. Based on the signaling mechanism, oncogenic BRAF mutations can be assigned to three different classes: class 1...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586110/ https://www.ncbi.nlm.nih.gov/pubmed/36275468 http://dx.doi.org/10.7717/peerj.14126 |
Sumario: | BRAF is a serine/threonine-specific protein kinase that regulates the MAPK/ERK signaling pathway, and mutations in the BRAF gene are considered oncogenic drivers in diverse types of cancer. Based on the signaling mechanism, oncogenic BRAF mutations can be assigned to three different classes: class 1 mutations constitutively activate the kinase domain and lead to RAS-independent signaling, class 2 mutations induce artificial dimerization of BRAF and RAS-independent signaling and class 3 mutations display reduced or abolished kinase function and require upstream signals. Despite the importance of BRAF mutations in cancer, the clinical associations, genetic interactions and therapeutic implications of non-V600 BRAF mutations have not been explored comprehensively yet. In this study, the author analyzed publically available data from the AACR Project GENIE to further understand clinical associations and genetic interactions of oncogenic BRAF mutations. The analyses identified 93 recurrent BRAF mutations, out of which 50 could be assigned to a functional class based on literature review. The author could show that the frequency of BRAF mutations varies across cancer types and subtypes, and that the BRAF mutation classes are unequally distributed across cancer types and subtypes. Using permutation testing-based co-occurrence analyses, the author defined the genetic interactions of BRAF mutations in multiple cancer types and revealed unexplored genetic interactions that might define clinically relevant subgroups. With non-small cell lung cancer as example, the author further showed that the genetic interactions are BRAF mutation class-specific. The presented analyses explore the properties of oncogenic BRAF mutations and will help to further delineate the complex role of BRAF in cancer. |
---|