Cargando…

Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection

BACKGROUND: Resection of posterior fossa tumors (PFTs) can result in hydrocephalus that requires permanent cerebrospinal fluid (CSF) diversion. Our goal was to prospectively validate a machine-learning model to predict postoperative hydrocephalus after PFT surgery requiring permanent CSF diversion....

Descripción completa

Detalles Bibliográficos
Autores principales: Bray, David P, Saad, Hassan, Douglas, James Miller, Grogan, Dayton, Dawoud, Reem A, Chow, Jocelyn, Deibert, Christopher, Pradilla, Gustavo, Nduom, Edjah K, Olson, Jeffrey J, Alawieh, Ali M, Hoang, Kimberly B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586212/
https://www.ncbi.nlm.nih.gov/pubmed/36299798
http://dx.doi.org/10.1093/noajnl/vdac145
_version_ 1784813646731280384
author Bray, David P
Saad, Hassan
Douglas, James Miller
Grogan, Dayton
Dawoud, Reem A
Chow, Jocelyn
Deibert, Christopher
Pradilla, Gustavo
Nduom, Edjah K
Olson, Jeffrey J
Alawieh, Ali M
Hoang, Kimberly B
author_facet Bray, David P
Saad, Hassan
Douglas, James Miller
Grogan, Dayton
Dawoud, Reem A
Chow, Jocelyn
Deibert, Christopher
Pradilla, Gustavo
Nduom, Edjah K
Olson, Jeffrey J
Alawieh, Ali M
Hoang, Kimberly B
author_sort Bray, David P
collection PubMed
description BACKGROUND: Resection of posterior fossa tumors (PFTs) can result in hydrocephalus that requires permanent cerebrospinal fluid (CSF) diversion. Our goal was to prospectively validate a machine-learning model to predict postoperative hydrocephalus after PFT surgery requiring permanent CSF diversion. METHODS: We collected preoperative and postoperative variables on 518 patients that underwent PFT surgery at our center in a retrospective fashion to train several statistical classifiers to predict the need for permanent CSF diversion as a binary class. A total of 62 classifiers relevant to our data structure were surveyed, including regression models, decision trees, Bayesian models, and multilayer perceptron artificial neural networks (ANN). Models were trained using the (N = 518) retrospective data using 10-fold cross-validation to obtain accuracy metrics. Given the low incidence of our positive outcome (12%), we used the positive predictive value along with the area under the receiver operating characteristic curve (AUC) to compare models. The best performing model was then prospectively validated on a set of 90 patients. RESULTS: Twelve percent of patients required permanent CSF diversion after PFT surgery. Of the trained models, 8 classifiers had an AUC greater than 0.5 on prospective testing. ANNs demonstrated the highest AUC of 0.902 with a positive predictive value of 83.3%. Despite comparable AUC, the remaining classifiers had a true positive rate below 35% (compared to ANN, P < .0001). The negative predictive value of the ANN model was 98.8%. CONCLUSIONS: ANN-based models can reliably predict the need for ventriculoperitoneal shunt after PFT surgery.
format Online
Article
Text
id pubmed-9586212
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-95862122022-10-25 Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection Bray, David P Saad, Hassan Douglas, James Miller Grogan, Dayton Dawoud, Reem A Chow, Jocelyn Deibert, Christopher Pradilla, Gustavo Nduom, Edjah K Olson, Jeffrey J Alawieh, Ali M Hoang, Kimberly B Neurooncol Adv Clinical Investigations BACKGROUND: Resection of posterior fossa tumors (PFTs) can result in hydrocephalus that requires permanent cerebrospinal fluid (CSF) diversion. Our goal was to prospectively validate a machine-learning model to predict postoperative hydrocephalus after PFT surgery requiring permanent CSF diversion. METHODS: We collected preoperative and postoperative variables on 518 patients that underwent PFT surgery at our center in a retrospective fashion to train several statistical classifiers to predict the need for permanent CSF diversion as a binary class. A total of 62 classifiers relevant to our data structure were surveyed, including regression models, decision trees, Bayesian models, and multilayer perceptron artificial neural networks (ANN). Models were trained using the (N = 518) retrospective data using 10-fold cross-validation to obtain accuracy metrics. Given the low incidence of our positive outcome (12%), we used the positive predictive value along with the area under the receiver operating characteristic curve (AUC) to compare models. The best performing model was then prospectively validated on a set of 90 patients. RESULTS: Twelve percent of patients required permanent CSF diversion after PFT surgery. Of the trained models, 8 classifiers had an AUC greater than 0.5 on prospective testing. ANNs demonstrated the highest AUC of 0.902 with a positive predictive value of 83.3%. Despite comparable AUC, the remaining classifiers had a true positive rate below 35% (compared to ANN, P < .0001). The negative predictive value of the ANN model was 98.8%. CONCLUSIONS: ANN-based models can reliably predict the need for ventriculoperitoneal shunt after PFT surgery. Oxford University Press 2022-09-13 /pmc/articles/PMC9586212/ /pubmed/36299798 http://dx.doi.org/10.1093/noajnl/vdac145 Text en © The Author(s) 2022. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Clinical Investigations
Bray, David P
Saad, Hassan
Douglas, James Miller
Grogan, Dayton
Dawoud, Reem A
Chow, Jocelyn
Deibert, Christopher
Pradilla, Gustavo
Nduom, Edjah K
Olson, Jeffrey J
Alawieh, Ali M
Hoang, Kimberly B
Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
title Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
title_full Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
title_fullStr Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
title_full_unstemmed Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
title_short Artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
title_sort artificial neural networks predict the need for permanent cerebrospinal fluid diversion following posterior fossa tumor resection
topic Clinical Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586212/
https://www.ncbi.nlm.nih.gov/pubmed/36299798
http://dx.doi.org/10.1093/noajnl/vdac145
work_keys_str_mv AT braydavidp artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT saadhassan artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT douglasjamesmiller artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT grogandayton artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT dawoudreema artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT chowjocelyn artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT deibertchristopher artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT pradillagustavo artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT nduomedjahk artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT olsonjeffreyj artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT alawiehalim artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection
AT hoangkimberlyb artificialneuralnetworkspredicttheneedforpermanentcerebrospinalfluiddiversionfollowingposteriorfossatumorresection