Cargando…
Ensembles of realistic power distribution networks
The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of suc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586305/ https://www.ncbi.nlm.nih.gov/pubmed/36215503 http://dx.doi.org/10.1073/pnas.2205772119 |
_version_ | 1784813663000985600 |
---|---|
author | Meyur, Rounak Vullikanti, Anil Swarup, Samarth Mortveit, Henning S. Centeno, Virgilio Phadke, Arun Poor, H. Vincent Marathe, Madhav V. |
author_facet | Meyur, Rounak Vullikanti, Anil Swarup, Samarth Mortveit, Henning S. Centeno, Virgilio Phadke, Arun Poor, H. Vincent Marathe, Madhav V. |
author_sort | Meyur, Rounak |
collection | PubMed |
description | The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks. |
format | Online Article Text |
id | pubmed-9586305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-95863052023-04-10 Ensembles of realistic power distribution networks Meyur, Rounak Vullikanti, Anil Swarup, Samarth Mortveit, Henning S. Centeno, Virgilio Phadke, Arun Poor, H. Vincent Marathe, Madhav V. Proc Natl Acad Sci U S A Physical Sciences The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks. National Academy of Sciences 2022-10-10 2022-10-18 /pmc/articles/PMC9586305/ /pubmed/36215503 http://dx.doi.org/10.1073/pnas.2205772119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Meyur, Rounak Vullikanti, Anil Swarup, Samarth Mortveit, Henning S. Centeno, Virgilio Phadke, Arun Poor, H. Vincent Marathe, Madhav V. Ensembles of realistic power distribution networks |
title | Ensembles of realistic power distribution networks |
title_full | Ensembles of realistic power distribution networks |
title_fullStr | Ensembles of realistic power distribution networks |
title_full_unstemmed | Ensembles of realistic power distribution networks |
title_short | Ensembles of realistic power distribution networks |
title_sort | ensembles of realistic power distribution networks |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586305/ https://www.ncbi.nlm.nih.gov/pubmed/36215503 http://dx.doi.org/10.1073/pnas.2205772119 |
work_keys_str_mv | AT meyurrounak ensemblesofrealisticpowerdistributionnetworks AT vullikantianil ensemblesofrealisticpowerdistributionnetworks AT swarupsamarth ensemblesofrealisticpowerdistributionnetworks AT mortveithennings ensemblesofrealisticpowerdistributionnetworks AT centenovirgilio ensemblesofrealisticpowerdistributionnetworks AT phadkearun ensemblesofrealisticpowerdistributionnetworks AT poorhvincent ensemblesofrealisticpowerdistributionnetworks AT marathemadhavv ensemblesofrealisticpowerdistributionnetworks |