Cargando…

Modelled optimisation approaches for laser cutting sheets simultaneously applied to EV component production

This paper proposes that laser cutting has potential as a viable alternative to stamping for mass manufacture of thin steel components such as stator and rotor components in the electric automotive sector. Current laser cutting processes are much less efficient than stamping. However, laser cutting...

Descripción completa

Detalles Bibliográficos
Autores principales: Dodd, Nathan, Goodall, Russell, Ballantyne, Erica, Heron, Graeme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586371/
https://www.ncbi.nlm.nih.gov/pubmed/36269709
http://dx.doi.org/10.1371/journal.pone.0275966
Descripción
Sumario:This paper proposes that laser cutting has potential as a viable alternative to stamping for mass manufacture of thin steel components such as stator and rotor components in the electric automotive sector. Current laser cutting processes are much less efficient than stamping. However, laser cutting is much more flexible and is used for small batches and one-off production. This paper assesses the potential of performing laser cutting operations of multiple sheets or layers simultaneously. This method is referred to herein as polystromata cutting. A numerical model is used to assess the manufacturing performance of stamping, traditional laser cutting and polystromata laser cutting. Polystromata laser cutting is shown to be capable of producing parts at 37% less cost than stamping. However, polystromata remains slower than stamping, taking 79% more time to produce each stator stack. Through this research it has been identified that optimisation of polystromata processes is more complex and performance efficiency varies wildly dependent on manufacturing set-up. This work aims to provide a best practice optimisation methodology for polystromata laser cutting by assessing results using different manufacturing objectives.