Cargando…
A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis
A novel robotic exoskeleton for fingers rehabilitation is developed, which is driven by linear motors through Bowden cables. For each finger, in addition to three links acting as phalanxes, two more links acting as knuckles are also implemented. Links are connected through passive joints, by which t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586729/ https://www.ncbi.nlm.nih.gov/pubmed/36276583 http://dx.doi.org/10.1155/2022/1751460 |
_version_ | 1784813744217391104 |
---|---|
author | Dai, Yong Ji, Junhong Yang, Guocai Yang, Yu |
author_facet | Dai, Yong Ji, Junhong Yang, Guocai Yang, Yu |
author_sort | Dai, Yong |
collection | PubMed |
description | A novel robotic exoskeleton for fingers rehabilitation is developed, which is driven by linear motors through Bowden cables. For each finger, in addition to three links acting as phalanxes, two more links acting as knuckles are also implemented. Links are connected through passive joints, by which translational and rotary movements can be realized simultaneously. Either flexion or extension motion is accomplished by one cable of adequate stiffness. This exoskeleton possesses good adaptability to finger length of different subjects and length variations during movement. The exoskeleton's kinematics model is built by the statistics method, and piecewise polynomial functions (PPF) are chosen to describe the relationship between motor displacement and joint variables. Finally, the relationship between motor displacement and the finger's total bending angle is obtained, which can be used for rehabilitation trajectory planning. Experimental results show that this exoskeleton achieves nearly the maximum finger bending angle of a healthy adult person, with the maximum driving force of 68.6 N. |
format | Online Article Text |
id | pubmed-9586729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95867292022-10-22 A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis Dai, Yong Ji, Junhong Yang, Guocai Yang, Yu Appl Bionics Biomech Research Article A novel robotic exoskeleton for fingers rehabilitation is developed, which is driven by linear motors through Bowden cables. For each finger, in addition to three links acting as phalanxes, two more links acting as knuckles are also implemented. Links are connected through passive joints, by which translational and rotary movements can be realized simultaneously. Either flexion or extension motion is accomplished by one cable of adequate stiffness. This exoskeleton possesses good adaptability to finger length of different subjects and length variations during movement. The exoskeleton's kinematics model is built by the statistics method, and piecewise polynomial functions (PPF) are chosen to describe the relationship between motor displacement and joint variables. Finally, the relationship between motor displacement and the finger's total bending angle is obtained, which can be used for rehabilitation trajectory planning. Experimental results show that this exoskeleton achieves nearly the maximum finger bending angle of a healthy adult person, with the maximum driving force of 68.6 N. Hindawi 2022-10-14 /pmc/articles/PMC9586729/ /pubmed/36276583 http://dx.doi.org/10.1155/2022/1751460 Text en Copyright © 2022 Yong Dai et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dai, Yong Ji, Junhong Yang, Guocai Yang, Yu A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis |
title | A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis |
title_full | A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis |
title_fullStr | A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis |
title_full_unstemmed | A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis |
title_short | A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis |
title_sort | novel robotic exoskeleton for finger rehabilitation: kinematics analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586729/ https://www.ncbi.nlm.nih.gov/pubmed/36276583 http://dx.doi.org/10.1155/2022/1751460 |
work_keys_str_mv | AT daiyong anovelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT jijunhong anovelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT yangguocai anovelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT yangyu anovelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT daiyong novelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT jijunhong novelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT yangguocai novelroboticexoskeletonforfingerrehabilitationkinematicsanalysis AT yangyu novelroboticexoskeletonforfingerrehabilitationkinematicsanalysis |