Cargando…
A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
The time-series data generated by turbofan engines has a great degree of complexity and dynamics. At present, recurrent neural networks are commonly used to model and forecast the remaining useful life (RUL). The relationship of the sample data is not taken into account, and there are issues such as...
Autores principales: | Peng, Cheng, Wu, Jiaqi, Tang, Zhaohui, Yuan, Xinpan, Li, Changyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586751/ https://www.ncbi.nlm.nih.gov/pubmed/36275974 http://dx.doi.org/10.1155/2022/9707940 |
Ejemplares similares
-
Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion
por: Peng, Cheng, et al.
Publicado: (2022) -
A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion
por: Peng, Cheng, et al.
Publicado: (2021) -
Advanced Control of Turbofan Engines
por: Richter, Hanz
Publicado: (2012) -
Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with Dimensionality Reduction
por: Hong, Chang Woo, et al.
Publicado: (2020) -
Deep learning approach for prediction of exergy and emission parameters of commercial high by-pass turbofan engines
por: Dursun, Omer Osman, et al.
Publicado: (2022)