Cargando…
Dynamic Predictive Models with Visualized Machine Learning for Assessing the Risk of Lung Metastasis in Kidney Cancer Patients
OBJECTIVE: To establish and verify the clinical prediction model of lung metastasis in renal cancer patients. METHOD: Kidney cancer patients from January 1, 2010, to December 31, 2017, in the SEER database were enrolled in this study. In the first section, LASSO method was adopted to select variable...
Autores principales: | Xu, Chan, Zhou, Qian, Liu, Wencai, Li, Wenle, Dong, Shengtao, Li, Wanying, Xu, Xiaofeng, Qiao, Ximin, Jiang, Youli, Chen, Jingfang, Yin, Chengliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586755/ https://www.ncbi.nlm.nih.gov/pubmed/36276292 http://dx.doi.org/10.1155/2022/5798602 |
Ejemplares similares
-
A Novel Nomogram for Prediction and Evaluation of Lymphatic Metastasis in Patients With Renal Cell Carcinoma
por: Li, Wenle, et al.
Publicado: (2022) -
Dynamic Predictive Models With Visualized Machine Learning for Assessing Chondrosarcoma Overall Survival
por: Li, Wenle, et al.
Publicado: (2022) -
A Visualized Dynamic Prediction Model for Lymphatic Metastasis in Ewing's Sarcoma for Smart Medical Services
por: Li, Wenle, et al.
Publicado: (2022) -
Machine Learning-Based Prediction of Lymph Node Metastasis Among Osteosarcoma Patients
por: Li, Wenle, et al.
Publicado: (2022) -
Establishment and Validation of a Machine Learning Prediction Model Based on Big Data for Predicting the Risk of Bone Metastasis in Renal Cell Carcinoma Patients
por: Xu, Chan, et al.
Publicado: (2022)