Cargando…
Using AAEHS-Net as an Attention-Based Auxiliary Extraction and Hybrid Subsampled Network for Semantic Segmentation
Semantic segmentation based on deep learning has undergone remarkable advancements in recent years. However, due to the neglect of the shallow features, the problems of inaccurate segmentation have persisted. To address this issue, a semantic segmentation network-attention-based auxiliary extraction...
Autores principales: | Zhao, Shan, Wang, Yibo, Tian, Kaiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586756/ https://www.ncbi.nlm.nih.gov/pubmed/36275973 http://dx.doi.org/10.1155/2022/1536976 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Enhancing Mask Transformer with Auxiliary Convolution Layers for Semantic Segmentation
por: Xia, Zhengyu, et al.
Publicado: (2023) -
Multiple-Attention Mechanism Network for Semantic Segmentation
por: Wang, Dongli, et al.
Publicado: (2022) -
Feature Pyramid U-Net with Attention for Semantic Segmentation of Forward-Looking Sonar Images
por: Zhao, Dongdong, et al.
Publicado: (2022) -
Subsampling
por: Politis, Dimitris N, et al.
Publicado: (1999)