Cargando…
To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury
The objective of this research is to investigate the mediating impact of salvianolic acid B (SalB) on SIRT1 signaling pathway and the mechanism by which it inhibits Nod-like receptor protein 3 (NLRP3), as well as to examine how SalB affects myocardial injury brought on by tumor lesions at the juncti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586805/ https://www.ncbi.nlm.nih.gov/pubmed/36277894 http://dx.doi.org/10.1155/2022/6560693 |
_version_ | 1784813763685253120 |
---|---|
author | Wang, Guo-Ping Guo, Zheng |
author_facet | Wang, Guo-Ping Guo, Zheng |
author_sort | Wang, Guo-Ping |
collection | PubMed |
description | The objective of this research is to investigate the mediating impact of salvianolic acid B (SalB) on SIRT1 signaling pathway and the mechanism by which it inhibits Nod-like receptor protein 3 (NLRP3), as well as to examine how SalB affects myocardial injury brought on by tumor lesions at the junction of the tube and the stomach. Through the establishment of the integration of a stomach tube tumor lesion rats combined with the experimental rat model, this study establishes the normal group, model group, and different SalB dose groups. For each group of cells, cell activity and cell apoptosis were determined and compared using colorimetry and enzyme-linked immunosorbent method about lactate dehydrogenase (LDH). Interleukin-1 beta levels are measured. DCFH-DA fluorescent probe was applied to identify intracellular “reactive oxygen species” (ROS). “Western blot” was used to determine NLRP3, caspase-1, and apoptosis-related spotted protein (ASC) in each group of cells. And SIRT1 signaling pathway related to SIRT1, phosphorylated AMP protein-activated kinase α (P-AMPK α), AMP protein-activated kinase α (AMPKα), and “peroxisome-proliferator-activated receptor γ coactivator 1α (PGC-1α) protein expression” are used. According to the final findings, SalB mediated the SIRT1 signaling pathway and had a beneficial impact on the upregulation of SIRT1, P-AMPK/AMPK, and PGC-1 protein expressions. SalB positively affects the downregulation of NLRP3 inflammasome-related proteins. Caspase-1 and ASC protein expression suggesting that SalB may inhibit the activation of NLRP3 inflammasome induced by oxidative stress by activating SIRT1/AMPK/PGC-1α signaling pathway. This plays an antimyocardial injury effect. |
format | Online Article Text |
id | pubmed-9586805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95868052022-10-22 To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury Wang, Guo-Ping Guo, Zheng Biomed Res Int Research Article The objective of this research is to investigate the mediating impact of salvianolic acid B (SalB) on SIRT1 signaling pathway and the mechanism by which it inhibits Nod-like receptor protein 3 (NLRP3), as well as to examine how SalB affects myocardial injury brought on by tumor lesions at the junction of the tube and the stomach. Through the establishment of the integration of a stomach tube tumor lesion rats combined with the experimental rat model, this study establishes the normal group, model group, and different SalB dose groups. For each group of cells, cell activity and cell apoptosis were determined and compared using colorimetry and enzyme-linked immunosorbent method about lactate dehydrogenase (LDH). Interleukin-1 beta levels are measured. DCFH-DA fluorescent probe was applied to identify intracellular “reactive oxygen species” (ROS). “Western blot” was used to determine NLRP3, caspase-1, and apoptosis-related spotted protein (ASC) in each group of cells. And SIRT1 signaling pathway related to SIRT1, phosphorylated AMP protein-activated kinase α (P-AMPK α), AMP protein-activated kinase α (AMPKα), and “peroxisome-proliferator-activated receptor γ coactivator 1α (PGC-1α) protein expression” are used. According to the final findings, SalB mediated the SIRT1 signaling pathway and had a beneficial impact on the upregulation of SIRT1, P-AMPK/AMPK, and PGC-1 protein expressions. SalB positively affects the downregulation of NLRP3 inflammasome-related proteins. Caspase-1 and ASC protein expression suggesting that SalB may inhibit the activation of NLRP3 inflammasome induced by oxidative stress by activating SIRT1/AMPK/PGC-1α signaling pathway. This plays an antimyocardial injury effect. Hindawi 2022-10-14 /pmc/articles/PMC9586805/ /pubmed/36277894 http://dx.doi.org/10.1155/2022/6560693 Text en Copyright © 2022 Guo-Ping Wang and Zheng Guo. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Guo-Ping Guo, Zheng To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury |
title | To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury |
title_full | To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury |
title_fullStr | To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury |
title_full_unstemmed | To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury |
title_short | To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury |
title_sort | to analyze the mechanism of salb regulating sirt1 to inhibit nlrp3 and its ameliorative effect on tubulogastric junction tumor lesions complicated with myocardial injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586805/ https://www.ncbi.nlm.nih.gov/pubmed/36277894 http://dx.doi.org/10.1155/2022/6560693 |
work_keys_str_mv | AT wangguoping toanalyzethemechanismofsalbregulatingsirt1toinhibitnlrp3anditsameliorativeeffectontubulogastricjunctiontumorlesionscomplicatedwithmyocardialinjury AT guozheng toanalyzethemechanismofsalbregulatingsirt1toinhibitnlrp3anditsameliorativeeffectontubulogastricjunctiontumorlesionscomplicatedwithmyocardialinjury |