Cargando…

Diffusion and interaction dynamics of the cytosolic peroxisomal import receptor PEX5

Cellular functions rely on proper actions of organelles such as peroxisomes. These organelles rely on the import of proteins from the cytosol. The peroxisomal import receptor PEX5 takes up target proteins in the cytosol and transports them to the peroxisomal matrix. However, its cytosolic molecular...

Descripción completa

Detalles Bibliográficos
Autores principales: Galiani, S., Reglinski, K., Carravilla, P., Barbotin, A., Urbančič, I., Ott, J., Sehr, J., Sezgin, E., Schneider, F., Waithe, D., Hublitz, P., Schliebs, W., Erdmann, R., Eggeling, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586885/
https://www.ncbi.nlm.nih.gov/pubmed/36299769
http://dx.doi.org/10.1016/j.bpr.2022.100055
Descripción
Sumario:Cellular functions rely on proper actions of organelles such as peroxisomes. These organelles rely on the import of proteins from the cytosol. The peroxisomal import receptor PEX5 takes up target proteins in the cytosol and transports them to the peroxisomal matrix. However, its cytosolic molecular interactions have so far not directly been disclosed. Here, we combined advanced optical microscopy and spectroscopy techniques such as fluorescence correlation spectroscopy and stimulated emission depletion microscopy with biochemical tools to present a detailed characterization of the cytosolic diffusion and interaction dynamics of PEX5. Among other features, we highlight a slow diffusion of PEX5, independent of aggregation or target binding, but associated with cytosolic interaction partners via its N-terminal domain. This sheds new light on the functionality of the receptor in the cytosol as well as highlighting the potential of using complementary microscopy tools to decipher molecular interactions in the cytosol by studying their diffusion dynamics.