Cargando…
High-resolution crop yield and water productivity dataset generated using random forest and remote sensing
Accurate and high-resolution crop yield and crop water productivity (CWP) datasets are required to understand and predict spatiotemporal variation in agricultural production capacity; however, datasets for maize and wheat, two key staple dryland crops in China, are currently lacking. In this study,...
Autores principales: | Cheng, Minghan, Jiao, Xiyun, Shi, Lei, Penuelas, Josep, Kumar, Lalit, Nie, Chenwei, Wu, Tianao, Liu, Kaihua, Wu, Wenbin, Jin, Xiuliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586934/ https://www.ncbi.nlm.nih.gov/pubmed/36271097 http://dx.doi.org/10.1038/s41597-022-01761-0 |
Ejemplares similares
-
The global dataset of historical yields for major crops 1981–2016
por: Iizumi, Toshichika, et al.
Publicado: (2020) -
The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
por: Schepaschenko, Dmitry, et al.
Publicado: (2019) -
A global yield dataset for major lignocellulosic bioenergy crops based on field measurements
por: Li, Wei, et al.
Publicado: (2018) -
French crop yield, area and production data for ten staple crops from 1900 to 2018 at county resolution
por: Schauberger, Bernhard, et al.
Publicado: (2022) -
EU-Forest, a high-resolution tree occurrence dataset for Europe
por: Mauri, Achille, et al.
Publicado: (2017)