Cargando…

Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores

Development of methods for population screening is necessary to improve the efficiency of secondary prevention of diseases. Until now, a common cutoff has been used for all people in the data set. However, if big data for health information can be used to modify individual cutoffs according to backg...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuyama, Takashi, Narita, Akira, Takanashi, Masaki, Kogure, Mana, Sato, Shuichi, Nakamura, Tomohiro, Nakane, Hideo, Ogishima, Soichi, Nagami, Fuji, Nakaya, Naoki, Tanno, Kozo, Imaeda, Takao, Hozawa, Atsushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586984/
https://www.ncbi.nlm.nih.gov/pubmed/36271231
http://dx.doi.org/10.1038/s41598-022-22266-1
_version_ 1784813807937257472
author Matsuyama, Takashi
Narita, Akira
Takanashi, Masaki
Kogure, Mana
Sato, Shuichi
Nakamura, Tomohiro
Nakane, Hideo
Ogishima, Soichi
Nagami, Fuji
Nakaya, Naoki
Tanno, Kozo
Imaeda, Takao
Hozawa, Atsushi
author_facet Matsuyama, Takashi
Narita, Akira
Takanashi, Masaki
Kogure, Mana
Sato, Shuichi
Nakamura, Tomohiro
Nakane, Hideo
Ogishima, Soichi
Nagami, Fuji
Nakaya, Naoki
Tanno, Kozo
Imaeda, Takao
Hozawa, Atsushi
author_sort Matsuyama, Takashi
collection PubMed
description Development of methods for population screening is necessary to improve the efficiency of secondary prevention of diseases. Until now, a common cutoff has been used for all people in the data set. However, if big data for health information can be used to modify individual cutoffs according to background factors, it may avoid wasting medical resources. Here we show that the estimated prevalence of the Center for Epidemiologic Studies Depression Scale positivity can be visualized by a heatmap using background factors from epidemiological big data and scores from the Athens Insomnia Scale. We also show that cutoffs based on the estimated prevalence can be used to decrease the number of people screened without decreasing the number of prevalent cases detected. Since this method can be applied to the screening of different outcomes, we believe our work can contribute to the development of efficient screening methods for various diseases.
format Online
Article
Text
id pubmed-9586984
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95869842022-10-23 Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores Matsuyama, Takashi Narita, Akira Takanashi, Masaki Kogure, Mana Sato, Shuichi Nakamura, Tomohiro Nakane, Hideo Ogishima, Soichi Nagami, Fuji Nakaya, Naoki Tanno, Kozo Imaeda, Takao Hozawa, Atsushi Sci Rep Article Development of methods for population screening is necessary to improve the efficiency of secondary prevention of diseases. Until now, a common cutoff has been used for all people in the data set. However, if big data for health information can be used to modify individual cutoffs according to background factors, it may avoid wasting medical resources. Here we show that the estimated prevalence of the Center for Epidemiologic Studies Depression Scale positivity can be visualized by a heatmap using background factors from epidemiological big data and scores from the Athens Insomnia Scale. We also show that cutoffs based on the estimated prevalence can be used to decrease the number of people screened without decreasing the number of prevalent cases detected. Since this method can be applied to the screening of different outcomes, we believe our work can contribute to the development of efficient screening methods for various diseases. Nature Publishing Group UK 2022-10-21 /pmc/articles/PMC9586984/ /pubmed/36271231 http://dx.doi.org/10.1038/s41598-022-22266-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Matsuyama, Takashi
Narita, Akira
Takanashi, Masaki
Kogure, Mana
Sato, Shuichi
Nakamura, Tomohiro
Nakane, Hideo
Ogishima, Soichi
Nagami, Fuji
Nakaya, Naoki
Tanno, Kozo
Imaeda, Takao
Hozawa, Atsushi
Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores
title Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores
title_full Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores
title_fullStr Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores
title_full_unstemmed Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores
title_short Visualization of estimated prevalence of CES-D positivity accounting for background factors and AIS scores
title_sort visualization of estimated prevalence of ces-d positivity accounting for background factors and ais scores
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586984/
https://www.ncbi.nlm.nih.gov/pubmed/36271231
http://dx.doi.org/10.1038/s41598-022-22266-1
work_keys_str_mv AT matsuyamatakashi visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT naritaakira visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT takanashimasaki visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT koguremana visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT satoshuichi visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT nakamuratomohiro visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT nakanehideo visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT ogishimasoichi visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT nagamifuji visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT nakayanaoki visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT tannokozo visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT imaedatakao visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores
AT hozawaatsushi visualizationofestimatedprevalenceofcesdpositivityaccountingforbackgroundfactorsandaisscores