Cargando…

Influence of Potamogeton crispus harvesting on phosphorus composition of Lake Yimeng

Harvesting is an important method used to control the overproduction of Potamogeton crispus in lakes. A three-year comparative field study was performed in a eutrophic lake (harvested area) and its connected lake (non-harvested area) to determine the effects of harvesting on the phosphorus (P) compo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lizhi, Wu, Xiyuan, Song, Hongli, An, Juan, Dong, Bin, Wu, Yuanzhi, Wang, Yun, Li, Bao, Liu, Qianjin, Yu, Wanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587033/
https://www.ncbi.nlm.nih.gov/pubmed/36271245
http://dx.doi.org/10.1038/s41598-022-22484-7
Descripción
Sumario:Harvesting is an important method used to control the overproduction of Potamogeton crispus in lakes. A three-year comparative field study was performed in a eutrophic lake (harvested area) and its connected lake (non-harvested area) to determine the effects of harvesting on the phosphorus (P) composition and environmental factors in the water and sediment. Results revealed that harvesting significantly reduced the dissolved total P and dissolved organic P (DOP) and increased the alkaline phosphatase activity and particulate P (PP) in the water. No significant differences were detected in the water total P (TP), soluble reactive P, chlorophyll-a, pH, and dissolved oxygen between the harvested and non-harvested areas. Sediment TP and organic P (OP) were significantly reduced in the harvested area. Harvesting changed the P composition in the water. In the non-harvested area, P was mainly formed by DOP (40%) in the water body, while in the harvested area, PP was the main water component (47%). Harvesting increased the proportion of inorganic P (IP) in the sediment and decreased the proportion of OP. In the water, the IP to TP ratio in the non-harvested and harvested areas were 58.26% and 63.51%, respectively. Our results showed that harvesting changed the P composition in the water and sediment. In the harvesting of submerged vegetation, our results can serve as a reference for the management of vegetation-rich lakes.