Cargando…
Pharmacological effects of caffeine on ventilation in adult zebrafish under free-swimming conditions
The zebrafish is widely used as a model in biological studies. In particular, the heart rate and cortisol levels of zebrafish are commonly measured to elucidate the pharmacological effects of chemical substances. Meanwhile, although ventilation is also an important physiological index reflecting emo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587047/ https://www.ncbi.nlm.nih.gov/pubmed/36271109 http://dx.doi.org/10.1038/s41598-022-22681-4 |
Sumario: | The zebrafish is widely used as a model in biological studies. In particular, the heart rate and cortisol levels of zebrafish are commonly measured to elucidate the pharmacological effects of chemical substances. Meanwhile, although ventilation is also an important physiological index reflecting emotion-like states, few studies have evaluated the effects of chemicals on ventilation in adult zebrafish. In this study, we assessed whether it is possible to evaluate the pharmacological effects elicited by caffeine in adult zebrafish under free-swimming conditions. We measured the ventilation in adult zebrafish exposed to multiple concentrations of caffeine under restraint and free-swimming conditions and evaluated the pharmacological effects of caffeine using linear mixed model analysis. In addition, results of electrocardiogram analysis and swimming speeds were compared with those in previous reports to ensure that an appropriate dose of caffeine was administered. Under restraint conditions, caffeine significantly decreased heart rate and increased ventilation in a concentration-dependent manner. Under free-swimming conditions, the ventilation rate significantly increased with increasing caffeine concentration. These results indicate that the pharmacological effects elicited by chemicals on ventilation can be evaluated in free-swimming zebrafish. |
---|