Cargando…

Evaluating Optical Quality of a New Hydrophilic Enhanced Monofocal Intraocular Lens and Comparison to the Monofocal Counterpart: An Optical Bench Analysis

INTRODUCTION: The aim of the study was to analyze the optical properties of a new hydrophilic enhanced monofocal intraocular lens (IOL) using optical bench analysis and compare it with its monofocal counterpart. METHODS: This laboratory study investigates the enhanced monofocal intraocular lens (L-3...

Descripción completa

Detalles Bibliográficos
Autores principales: Borkenstein, Andreas F., Borkenstein, Eva-Maria, Schmid, Ruediger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Healthcare 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587156/
https://www.ncbi.nlm.nih.gov/pubmed/36040648
http://dx.doi.org/10.1007/s40123-022-00561-4
Descripción
Sumario:INTRODUCTION: The aim of the study was to analyze the optical properties of a new hydrophilic enhanced monofocal intraocular lens (IOL) using optical bench analysis and compare it with its monofocal counterpart. METHODS: This laboratory study investigates the enhanced monofocal intraocular lens (L-333) and the monofocal counterpart (L-313) IOL by Teleon Surgical, Spankeren, Netherlands on the optical bench, using OptiSpheric IOL PRO2 (Trioptics, Germany) in order to assess the optical quality according to ISO 11979 with ISO-2 Cornea. IOLs (power 22.0 D) were evaluated regarding through frequency modulation transfer function (MTF), Strehl ratio (SR), and through focus MTF at 50 lp/mm using a 3.0-mm and a 4.5-mm aperture. Tilt and decentration were applied. In addition, wavefront measurements were obtained using WaveMaster® IOL 2 device (Trioptics, Germany) and analyzed. RESULTS: Centered: The MTF (mean) at 50 lp/mm (L-333/L-313) with 3.0 mm aperture was 0.606/0.724 and with 4.5 mm aperture 0.330/0.409. The SR (mean) with 3.0 mm aperture was 0.586/0.809 and with 4.5 mm aperture 0.330/0.348. Decentered by 1 mm: The MTF (mean) at 50 lp/mm (L-333/L-313) with 3.0 mm aperture was 0.485/0.705 and with 4.5 mm aperture 0.255/0.374. The SR (mean) with 3.0 mm aperture was 0.457/0.739 and with 4.5 mm aperture 0.185/0.268. Tilted by 5 degrees: The MTF (mean) at 50 lp/mm (L-333/L-313) with 3.0 mm aperture was 0.577/0.657 and with 4.5 mm aperture 0.345/0.336. The SR (mean) with 3.0 mm aperture was 0.583/0.702 and with 4.5 mm aperture 0.269/0.237. In through focus MTF and aperture of 3.0 mm, the L-333 showed a peak of 0.41 with some enlarged depth of power of about 2 D. For the aperture of 4.5 mm, the MTF values of L-313 and L-333 were slightly reduced; L-333 showed an MTF peak of 0.23 and some reduced depth of power of about 1.5 D. Wavefront measurements showed no major aberrations for the L-313, while a combination of moderate increase in Z 4-0 and Z 6-0 with opposite sign was revealed for the L-333. CONCLUSION: The enhanced monofocal Lentis Quantum (L-333) produces some enlarged depth of focus by combining spherical aberration of different order and opposite sign. The Lentis Quantum performs very well in comparison to the aspherical monofocal counterpart owing to its optical design. Results with large apertures were sufficient too, suggesting that  the lens is a good option in eyes with a wide pupil and thus in refractive surgeries of young patients.