Cargando…
On the limits of graph neural networks for the early diagnosis of Alzheimer’s disease
Alzheimer's disease (AD) is a neurodegenerative disease whose molecular mechanisms are activated several years before cognitive symptoms appear. Genotype-based prediction of the phenotype is thus a key challenge for the early diagnosis of AD. Machine learning techniques that have been proposed...
Autores principales: | Hernández-Lorenzo, Laura, Hoffmann, Markus, Scheibling, Evelyn, List, Markus, Matías-Guiu, Jordi A., Ayala, Jose L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587223/ https://www.ncbi.nlm.nih.gov/pubmed/36271229 http://dx.doi.org/10.1038/s41598-022-21491-y |
Ejemplares similares
-
Personalized Explanations for Early Diagnosis of Alzheimer’s Disease Using Explainable Graph Neural Networks with Population Graphs
por: Kim, So Yeon
Publicado: (2023) -
Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging
por: Díaz-Álvarez, Josefa, et al.
Publicado: (2022) -
GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms
por: García-Gutierrez, Fernando, et al.
Publicado: (2022) -
Convivir con Alzheimer /
por: Matías-Guiu Guía, Jordi
Publicado: (2004) -
Rapid prediction of protein natural frequencies using graph neural networks
por: Guo, Kai, et al.
Publicado: (2022)