Cargando…

Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31

We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran-Dinh, Alexy, Laurent, Quentin, Even, Guillaume, Tanaka, Sébastien, Lortat-Jacob, Brice, Castier, Yves, Mal, Hervé, Messika, Jonathan, Mordant, Pierre, Nicoletti, Antonino, Montravers, Philippe, Caligiuri, Giuseppina, Morilla, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587244/
https://www.ncbi.nlm.nih.gov/pubmed/36271122
http://dx.doi.org/10.1038/s41598-022-21070-1
_version_ 1784813864439775232
author Tran-Dinh, Alexy
Laurent, Quentin
Even, Guillaume
Tanaka, Sébastien
Lortat-Jacob, Brice
Castier, Yves
Mal, Hervé
Messika, Jonathan
Mordant, Pierre
Nicoletti, Antonino
Montravers, Philippe
Caligiuri, Giuseppina
Morilla, Ian
author_facet Tran-Dinh, Alexy
Laurent, Quentin
Even, Guillaume
Tanaka, Sébastien
Lortat-Jacob, Brice
Castier, Yves
Mal, Hervé
Messika, Jonathan
Mordant, Pierre
Nicoletti, Antonino
Montravers, Philippe
Caligiuri, Giuseppina
Morilla, Ian
author_sort Tran-Dinh, Alexy
collection PubMed
description We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO(2)/FiO(2)) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a “peace-maker” at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO(2)/FiO(2) and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort.
format Online
Article
Text
id pubmed-9587244
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95872442022-10-23 Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31 Tran-Dinh, Alexy Laurent, Quentin Even, Guillaume Tanaka, Sébastien Lortat-Jacob, Brice Castier, Yves Mal, Hervé Messika, Jonathan Mordant, Pierre Nicoletti, Antonino Montravers, Philippe Caligiuri, Giuseppina Morilla, Ian Sci Rep Article We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO(2)/FiO(2)) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a “peace-maker” at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO(2)/FiO(2) and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort. Nature Publishing Group UK 2022-10-21 /pmc/articles/PMC9587244/ /pubmed/36271122 http://dx.doi.org/10.1038/s41598-022-21070-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Tran-Dinh, Alexy
Laurent, Quentin
Even, Guillaume
Tanaka, Sébastien
Lortat-Jacob, Brice
Castier, Yves
Mal, Hervé
Messika, Jonathan
Mordant, Pierre
Nicoletti, Antonino
Montravers, Philippe
Caligiuri, Giuseppina
Morilla, Ian
Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31
title Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31
title_full Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31
title_fullStr Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31
title_full_unstemmed Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31
title_short Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31
title_sort personalized risk predictor for acute cellular rejection in lung transplant using soluble cd31
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587244/
https://www.ncbi.nlm.nih.gov/pubmed/36271122
http://dx.doi.org/10.1038/s41598-022-21070-1
work_keys_str_mv AT trandinhalexy personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT laurentquentin personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT evenguillaume personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT tanakasebastien personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT lortatjacobbrice personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT castieryves personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT malherve personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT messikajonathan personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT mordantpierre personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT nicolettiantonino personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT montraversphilippe personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT caligiurigiuseppina personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31
AT morillaian personalizedriskpredictorforacutecellularrejectioninlungtransplantusingsolublecd31