Cargando…
Multiplexed imaging mass cytometry reveals distinct tumor-immune microenvironments linked to immunotherapy responses in melanoma
BACKGROUND: Single-cell technologies have enabled extensive analysis of complex immune composition, phenotype and interactions within tumor, which is crucial in understanding the mechanisms behind cancer progression and treatment resistance. Unfortunately, knowledge on cell phenotypes and their spat...
Autores principales: | Xiao, Xu, Guo, Qian, Cui, Chuanliang, Lin, Yating, Zhang, Lei, Ding, Xin, Li, Qiyuan, Wang, Minshu, Yang, Wenxian, Kong, Yan, Yu, Rongshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587266/ https://www.ncbi.nlm.nih.gov/pubmed/36281356 http://dx.doi.org/10.1038/s43856-022-00197-2 |
Ejemplares similares
-
Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images
por: Hu, Jing, et al.
Publicado: (2020) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment
por: Kuett, Laura, et al.
Publicado: (2022) -
Mass cytometry immunostaining protocol for multiplexing clinical samples
por: Gadalla, Ramy, et al.
Publicado: (2022) -
Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma
por: Cui, Chuanliang, et al.
Publicado: (2021)