Cargando…

Nanometer-scale photon confinement in topology-optimized dielectric cavities

Nanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Albrechtsen, Marcus, Vosoughi Lahijani, Babak, Christiansen, Rasmus Ellebæk, Nguyen, Vy Thi Hoang, Casses, Laura Nevenka, Hansen, Søren Engelberth, Stenger, Nicolas, Sigmund, Ole, Jansen, Henri, Mørk, Jesper, Stobbe, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587274/
https://www.ncbi.nlm.nih.gov/pubmed/36271087
http://dx.doi.org/10.1038/s41467-022-33874-w
_version_ 1784813872889200640
author Albrechtsen, Marcus
Vosoughi Lahijani, Babak
Christiansen, Rasmus Ellebæk
Nguyen, Vy Thi Hoang
Casses, Laura Nevenka
Hansen, Søren Engelberth
Stenger, Nicolas
Sigmund, Ole
Jansen, Henri
Mørk, Jesper
Stobbe, Søren
author_facet Albrechtsen, Marcus
Vosoughi Lahijani, Babak
Christiansen, Rasmus Ellebæk
Nguyen, Vy Thi Hoang
Casses, Laura Nevenka
Hansen, Søren Engelberth
Stenger, Nicolas
Sigmund, Ole
Jansen, Henri
Mørk, Jesper
Stobbe, Søren
author_sort Albrechtsen, Marcus
collection PubMed
description Nanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here, we integrate measured fabrication constraints into topology optimization, aiming for the strongest possible light-matter interaction in a compact silicon membrane, demonstrating an unprecedented photonic nanocavity with a mode volume of V ~ 3 × 10(−4) λ(3), quality factor Q ~ 1100, and footprint 4 λ(2) for telecom photons with a λ ~ 1550 nm wavelength. We fabricate the cavity, which confines photons inside 8 nm silicon bridges with ultra-high aspect ratios of 30 and use near-field optical measurements to perform the first experimental demonstration of photon confinement to a single hotspot well below the diffraction limit in dielectrics. Our framework intertwines topology optimization with fabrication and thereby initiates a new paradigm of high-performance additive and subtractive manufacturing.
format Online
Article
Text
id pubmed-9587274
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95872742022-10-23 Nanometer-scale photon confinement in topology-optimized dielectric cavities Albrechtsen, Marcus Vosoughi Lahijani, Babak Christiansen, Rasmus Ellebæk Nguyen, Vy Thi Hoang Casses, Laura Nevenka Hansen, Søren Engelberth Stenger, Nicolas Sigmund, Ole Jansen, Henri Mørk, Jesper Stobbe, Søren Nat Commun Article Nanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here, we integrate measured fabrication constraints into topology optimization, aiming for the strongest possible light-matter interaction in a compact silicon membrane, demonstrating an unprecedented photonic nanocavity with a mode volume of V ~ 3 × 10(−4) λ(3), quality factor Q ~ 1100, and footprint 4 λ(2) for telecom photons with a λ ~ 1550 nm wavelength. We fabricate the cavity, which confines photons inside 8 nm silicon bridges with ultra-high aspect ratios of 30 and use near-field optical measurements to perform the first experimental demonstration of photon confinement to a single hotspot well below the diffraction limit in dielectrics. Our framework intertwines topology optimization with fabrication and thereby initiates a new paradigm of high-performance additive and subtractive manufacturing. Nature Publishing Group UK 2022-10-21 /pmc/articles/PMC9587274/ /pubmed/36271087 http://dx.doi.org/10.1038/s41467-022-33874-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Albrechtsen, Marcus
Vosoughi Lahijani, Babak
Christiansen, Rasmus Ellebæk
Nguyen, Vy Thi Hoang
Casses, Laura Nevenka
Hansen, Søren Engelberth
Stenger, Nicolas
Sigmund, Ole
Jansen, Henri
Mørk, Jesper
Stobbe, Søren
Nanometer-scale photon confinement in topology-optimized dielectric cavities
title Nanometer-scale photon confinement in topology-optimized dielectric cavities
title_full Nanometer-scale photon confinement in topology-optimized dielectric cavities
title_fullStr Nanometer-scale photon confinement in topology-optimized dielectric cavities
title_full_unstemmed Nanometer-scale photon confinement in topology-optimized dielectric cavities
title_short Nanometer-scale photon confinement in topology-optimized dielectric cavities
title_sort nanometer-scale photon confinement in topology-optimized dielectric cavities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587274/
https://www.ncbi.nlm.nih.gov/pubmed/36271087
http://dx.doi.org/10.1038/s41467-022-33874-w
work_keys_str_mv AT albrechtsenmarcus nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT vosoughilahijanibabak nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT christiansenrasmusellebæk nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT nguyenvythihoang nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT casseslauranevenka nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT hansensørenengelberth nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT stengernicolas nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT sigmundole nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT jansenhenri nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT mørkjesper nanometerscalephotonconfinementintopologyoptimizeddielectriccavities
AT stobbesøren nanometerscalephotonconfinementintopologyoptimizeddielectriccavities