Cargando…

Associations between insulin-like growth factor binding protein-2 and lipoprotein kinetics in men

Low circulating concentrations of insulin-like growth factor binding protein-2 (IGFBP-2) have been associated with dyslipidemia, notably with high triglyceride (TG) levels. However, the determinants by which IGFBP-2 influences lipoprotein metabolism, especially that of TG-rich lipoproteins (TRLs), a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rauzier, Chloé, Lamarche, Benoît, Tremblay, André J., Couture, Patrick, Picard, Frédéric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587400/
https://www.ncbi.nlm.nih.gov/pubmed/36030928
http://dx.doi.org/10.1016/j.jlr.2022.100269
Descripción
Sumario:Low circulating concentrations of insulin-like growth factor binding protein-2 (IGFBP-2) have been associated with dyslipidemia, notably with high triglyceride (TG) levels. However, the determinants by which IGFBP-2 influences lipoprotein metabolism, especially that of TG-rich lipoproteins (TRLs), are poorly understood. Here, we aimed to assess the relationships between IGFBP-2 levels and lipoprotein production and catabolism in human subjects. Fasting IGFBP-2 concentrations were measured in the plasma of 219 men pooled from previous lipoprotein kinetics studies. We analyzed production rate and fractional catabolic rates of TRLapoB-48, and LDL-, IDL-, and VLDLapoB-100 by multicompartmental modeling of l-[5,5,5-D3] leucine enrichment data after a 12 h primed constant infusion in individuals kept in a constant nutritional steady state. Subjects had an average BMI of 30 kg/m(2), plasma IGFBP-2 levels of 157 ng/ml, and TG of 2.2 mmol/l. After adjustments for age and BMI, IGFBP-2 levels were negatively associated with plasma TG (r = −0.29; P < 0.0001) and positively associated with HDL-cholesterol (r = 0.26; P < 0.0001). In addition, IGFBP-2 levels were positively associated with the fractional catabolic rate of VLDLapoB-100 (r = 0.20; P < 0.01) and IDLapoB-100 (r = 0.19; P < 0.05) and inversely with the production rate of TRLapoB-48 (r = −0.28; P < 0.001). These correlations remained statistically significant after adjustments for age, BMI, and the amount of fat given during the tracer infusion. These findings show that the association between low plasma IGFBP-2 and high TG concentrations could be due to both an impaired clearance of apoB-100-containing VLDL and IDL particles and an increased production of apoB-48-containing chylomicrons. Additional studies are necessary to investigate whether and how IGFBP-2 directly impacts the kinetics of TRL.