Cargando…
Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study
BACKGROUND: A commonly used method for measuring frailty is the accumulation of deficits expressed as a frailty index (FI). FIs can be readily adapted to many databases, as the parameters to use are not prescribed but rather reflect a subset of extracted features (variables). Unfortunately, the stru...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587492/ https://www.ncbi.nlm.nih.gov/pubmed/36206042 http://dx.doi.org/10.2196/38464 |
_version_ | 1784813913989185536 |
---|---|
author | Oates, John Shafiabady, Niusha Ambagtsheer, Rachel Beilby, Justin Seiboth, Chris Dent, Elsa |
author_facet | Oates, John Shafiabady, Niusha Ambagtsheer, Rachel Beilby, Justin Seiboth, Chris Dent, Elsa |
author_sort | Oates, John |
collection | PubMed |
description | BACKGROUND: A commonly used method for measuring frailty is the accumulation of deficits expressed as a frailty index (FI). FIs can be readily adapted to many databases, as the parameters to use are not prescribed but rather reflect a subset of extracted features (variables). Unfortunately, the structure of many databases does not permit the direct extraction of a suitable subset, requiring additional effort to determine and verify the value of features for each record and thus significantly increasing cost. OBJECTIVE: Our objective is to describe how an artificial intelligence (AI) optimization technique called partial genetic algorithms can be used to refine the subset of features used to calculate an FI and favor features that have the least cost of acquisition. METHODS: This is a secondary analysis of a residential care database compiled from 10 facilities in Queensland, Australia. The database is comprised of routinely collected administrative data and unstructured patient notes for 592 residents aged 75 years and over. The primary study derived an electronic frailty index (eFI) calculated from 36 suitable features. We then structurally modified a genetic algorithm to find an optimal predictor of the calculated eFI (0.21 threshold) from 2 sets of features. Partial genetic algorithms were used to optimize 4 underlying classification models: logistic regression, decision trees, random forest, and support vector machines. RESULTS: Among the underlying models, logistic regression was found to produce the best models in almost all scenarios and feature set sizes. The best models were built using all the low-cost features and as few as 10 high-cost features, and they performed well enough (sensitivity 89%, specificity 87%) to be considered candidates for a low-cost frailty screening test. CONCLUSIONS: In this study, a systematic approach for selecting an optimal set of features with a low cost of acquisition and performance comparable to the eFI for detecting frailty was demonstrated on an aged care database. Partial genetic algorithms have proven useful in offering a trade-off between cost and accuracy to systematically identify frailty. |
format | Online Article Text |
id | pubmed-9587492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-95874922022-10-23 Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study Oates, John Shafiabady, Niusha Ambagtsheer, Rachel Beilby, Justin Seiboth, Chris Dent, Elsa JMIR Aging Original Paper BACKGROUND: A commonly used method for measuring frailty is the accumulation of deficits expressed as a frailty index (FI). FIs can be readily adapted to many databases, as the parameters to use are not prescribed but rather reflect a subset of extracted features (variables). Unfortunately, the structure of many databases does not permit the direct extraction of a suitable subset, requiring additional effort to determine and verify the value of features for each record and thus significantly increasing cost. OBJECTIVE: Our objective is to describe how an artificial intelligence (AI) optimization technique called partial genetic algorithms can be used to refine the subset of features used to calculate an FI and favor features that have the least cost of acquisition. METHODS: This is a secondary analysis of a residential care database compiled from 10 facilities in Queensland, Australia. The database is comprised of routinely collected administrative data and unstructured patient notes for 592 residents aged 75 years and over. The primary study derived an electronic frailty index (eFI) calculated from 36 suitable features. We then structurally modified a genetic algorithm to find an optimal predictor of the calculated eFI (0.21 threshold) from 2 sets of features. Partial genetic algorithms were used to optimize 4 underlying classification models: logistic regression, decision trees, random forest, and support vector machines. RESULTS: Among the underlying models, logistic regression was found to produce the best models in almost all scenarios and feature set sizes. The best models were built using all the low-cost features and as few as 10 high-cost features, and they performed well enough (sensitivity 89%, specificity 87%) to be considered candidates for a low-cost frailty screening test. CONCLUSIONS: In this study, a systematic approach for selecting an optimal set of features with a low cost of acquisition and performance comparable to the eFI for detecting frailty was demonstrated on an aged care database. Partial genetic algorithms have proven useful in offering a trade-off between cost and accuracy to systematically identify frailty. JMIR Publications 2022-10-07 /pmc/articles/PMC9587492/ /pubmed/36206042 http://dx.doi.org/10.2196/38464 Text en ©John Oates, Niusha Shafiabady, Rachel Ambagtsheer, Justin Beilby, Chris Seiboth, Elsa Dent. Originally published in JMIR Aging (https://aging.jmir.org), 07.10.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Aging, is properly cited. The complete bibliographic information, a link to the original publication on https://aging.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Oates, John Shafiabady, Niusha Ambagtsheer, Rachel Beilby, Justin Seiboth, Chris Dent, Elsa Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study |
title | Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study |
title_full | Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study |
title_fullStr | Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study |
title_full_unstemmed | Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study |
title_short | Evolving Hybrid Partial Genetic Algorithm Classification Model for Cost-effective Frailty Screening: Investigative Study |
title_sort | evolving hybrid partial genetic algorithm classification model for cost-effective frailty screening: investigative study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587492/ https://www.ncbi.nlm.nih.gov/pubmed/36206042 http://dx.doi.org/10.2196/38464 |
work_keys_str_mv | AT oatesjohn evolvinghybridpartialgeneticalgorithmclassificationmodelforcosteffectivefrailtyscreeninginvestigativestudy AT shafiabadyniusha evolvinghybridpartialgeneticalgorithmclassificationmodelforcosteffectivefrailtyscreeninginvestigativestudy AT ambagtsheerrachel evolvinghybridpartialgeneticalgorithmclassificationmodelforcosteffectivefrailtyscreeninginvestigativestudy AT beilbyjustin evolvinghybridpartialgeneticalgorithmclassificationmodelforcosteffectivefrailtyscreeninginvestigativestudy AT seibothchris evolvinghybridpartialgeneticalgorithmclassificationmodelforcosteffectivefrailtyscreeninginvestigativestudy AT dentelsa evolvinghybridpartialgeneticalgorithmclassificationmodelforcosteffectivefrailtyscreeninginvestigativestudy |