Cargando…
Artificial Intelligence for Radiation Oncology Applications Using Public Datasets
Artificial intelligence (AI) has exceptional potential to positively impact the field of radiation oncology. However, large curated datasets - often involving imaging data and corresponding annotations - are required to develop radiation oncology AI models. Importantly, the recent establishment of F...
Autores principales: | Wahid, Kareem A., Glerean, Enrico, Sahlsten, Jaakko, Jaskari, Joel, Kaski, Kimmo, Naser, Mohamed A., He, Renjie, Mohamed, Abdallah S.R., Fuller, Clifton D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587532/ https://www.ncbi.nlm.nih.gov/pubmed/36202442 http://dx.doi.org/10.1016/j.semradonc.2022.06.009 |
Ejemplares similares
-
Segmentation stability of human head and neck cancer medical images for radiotherapy applications under de-identification conditions: Benchmarking data sharing and artificial intelligence use-cases
por: Sahlsten, Jaakko, et al.
Publicado: (2023) -
Application of simultaneous uncertainty quantification for image segmentation with probabilistic deep learning: Performance benchmarking of oropharyngeal cancer target delineation as a use-case
por: Sahlsten, Jaakko, et al.
Publicado: (2023) -
Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network
por: Taku, Nicolette, et al.
Publicado: (2022) -
Deep learning auto-segmentation of cervical skeletal muscle for sarcopenia analysis in patients with head and neck cancer
por: Naser, Mohamed A., et al.
Publicado: (2022) -
Muscle and adipose tissue segmentations at the third cervical vertebral level in patients with head and neck cancer
por: Wahid, Kareem A., et al.
Publicado: (2022)