Cargando…
Quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging to predict lymphovascular invasion and survival outcome in breast cancer
BACKGROUND: Lymphovascular invasion (LVI) predicts a poor outcome of breast cancer (BC), but LVI can only be postoperatively diagnosed by histopathology. We aimed to determine whether quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can preoperatively predict...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587620/ https://www.ncbi.nlm.nih.gov/pubmed/36273200 http://dx.doi.org/10.1186/s40644-022-00499-7 |
Sumario: | BACKGROUND: Lymphovascular invasion (LVI) predicts a poor outcome of breast cancer (BC), but LVI can only be postoperatively diagnosed by histopathology. We aimed to determine whether quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can preoperatively predict LVI and clinical outcome of BC patients. METHODS: A total of 189 consecutive BC patients who underwent multiparametric MRI scans were retrospectively evaluated. Quantitative (K(trans), V(e), K(ep)) and semiquantitative DCE-MRI parameters (W(− in), W(− out), TTP), and clinicopathological features were compared between LVI-positive and LVI-negative groups. All variables were calculated by using univariate logistic regression analysis to determine the predictors for LVI. Multivariate logistic regression was used to build a combined-predicted model for LVI-positive status. Receiver operating characteristic (ROC) curves evaluated the diagnostic efficiency of the model and Kaplan-Meier curves showed the relationships with the clinical outcomes. Multivariate analyses with a Cox proportional hazard model were used to analyze the hazard ratio (HR) for recurrence-free survival (RFS) and overall survival (OS). RESULTS: LVI-positive patients had a higher K(ep) value than LVI-negative patients (0.92 ± 0.30 vs. 0.81 ± 0.23, P = 0.012). N2 stage [odds ratio (OR) = 3.75, P = 0.018], N3 stage (OR = 4.28, P = 0.044), and K(ep) value (OR = 5.52, P = 0.016) were associated with LVI positivity. The combined-predicted LVI model that incorporated the N stage and K(ep) yielded an accuracy of 0.735 and a specificity of 0.801. The median RFS was significantly different between the LVI-positive and LVI-negative groups (31.5 vs. 34.0 months, P = 0.010) and between the combined-predicted LVI-positive and LVI-negative groups (31.8 vs. 32.0 months, P = 0.007). The median OS was not significantly different between the LVI-positive and LVI-negative groups (41.5 vs. 44.0 months, P = 0.270) and between the combined-predicted LVI-positive and LVI-negative groups (42.8 vs. 43.5 months, P = 0.970). LVI status (HR = 2.40), N2 (HR = 3.35), and the combined-predicted LVI model (HR = 1.61) were independently associated with disease recurrence. CONCLUSION: The quantitative parameter of K(ep) could predict LVI. LVI status, N stage, and the combined-predicted LVI model were predictors of a poor RFS but not OS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-022-00499-7. |
---|