Cargando…

A Review of the Role of Ultrasound Radiomics and Its Application and Limitations in the Investigation of Thyroid Disease

The incidence of thyroid disease has gradually increased in recent years. Conventional ultrasound is one of the most critical thyroid imaging methods, but it still has certain limitations. The use of B-model ultrasound (BMUS) diagnosis of thyroid disease will be affected by a doctors’ clinical exper...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Wen-Wu, Zhang, Di, Ni, Xue-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587688/
https://www.ncbi.nlm.nih.gov/pubmed/36258648
http://dx.doi.org/10.12659/MSM.937738
Descripción
Sumario:The incidence of thyroid disease has gradually increased in recent years. Conventional ultrasound is one of the most critical thyroid imaging methods, but it still has certain limitations. The use of B-model ultrasound (BMUS) diagnosis of thyroid disease will be affected by a doctors’ clinical experience. The ultrasound radiomics is based on ultrasound images to delineate the region of interest (ROI), and then extract features to quantify the disease information contained in the image, which helps to analyze the correlation between the image and the clinical pathology of the disease. By building a powerful model, it can be used to diagnose benign and malignant thyroid nodules, predict lymph node status in thyroid cancer, analyze molecular biological characteristics, and predict the survival of thyroid cancer patients. At present, the application of ultrasound radiomics in the thyroid is pervasive. These ultrasound radiomics studies have further promoted the progress of ultrasonic technology in the field of thyroid disease. Clinicians should be familiar with the workflow of ultrasound radiomics and understand the application of this technology to the thyroid. In this article, we first describe the workflow of ultrasound radiomics, followed by an overview of the application of ultrasound radiomics to the thyroid. Finally, some current limitations of the technology and areas for future improvement are discussed. This article aims to review the role of ultrasound radiomics and its application and limitations in the investigation of thyroid disease.