Cargando…
Slow-oscillatory tACS does not modulate human motor cortical response to repeated plasticity paradigms
Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587974/ https://www.ncbi.nlm.nih.gov/pubmed/36173425 http://dx.doi.org/10.1007/s00221-022-06462-z |
Sumario: | Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However, it is not known whether slow-wave oscillations—without the concomitant requirement of sleep—play a causal role in human synaptic homeostasis. Here, we aimed to answer this question using transcranial alternating current stimulation (tACS) to induce slow-oscillatory activity in awake human participants. tACS was interleaved between two plasticity-inducing interventions: motor learning, and paired associative stimulation (PAS). The hypothesis tested was that slow-oscillatory tACS would prevent homeostatic interference between motor learning and PAS, and facilitate plasticity from these successive interventions. Thirty-six participants received sham and active fronto-motor tACS in two separate sessions, along with electroencephalography (EEG) recordings, while a further 38 participants received tACS through a control montage. Motor evoked potentials (MEPs) were recorded throughout the session to quantify plasticity changes after the different interventions, and the data were analysed with Bayesian statistics. As expected, there was converging evidence that motor training led to excitatory plasticity. Importantly, we found moderate evidence against an effect of active tACS in restoring PAS plasticity, and no evidence of lasting entrainment of slow oscillations in the EEG. This suggests that, under the conditions tested here, slow-oscillatory tACS does not modulate synaptic homeostasis in the motor system of awake humans. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00221-022-06462-z. |
---|