Cargando…
Density-of-states similarity descriptor for unsupervised learning from materials data
We develop a materials descriptor based on the electronic density-of-states (DOS) and investigate the similarity of materials based on it. As an application example, we study the Computational 2D Materials Database (C2DB) that hosts thousands of two-dimensional materials with their properties calcul...
Autores principales: | Kuban, Martin, Rigamonti, Santiago, Scheidgen, Markus, Draxl, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587991/ https://www.ncbi.nlm.nih.gov/pubmed/36273207 http://dx.doi.org/10.1038/s41597-022-01754-z |
Ejemplares similares
-
Unsupervised Learning Based on Multiple Descriptors for WSIs Diagnosis
por: Sheikh, Taimoor Shakeel, et al.
Publicado: (2022) -
Matching sensor ontologies with unsupervised neural network with competitive learning
por: Xue, Xingsi, et al.
Publicado: (2021) -
Approach for 3D Cultural Relic Classification Based on a Low-Dimensional Descriptor and Unsupervised Learning
por: Gao, Hongjuan, et al.
Publicado: (2020) -
Unsupervised learning of haptic material properties
por: Metzger, Anna, et al.
Publicado: (2022) -
Unsupervised Event Graph Representation and Similarity Learning on Biomedical Literature
por: Frisoni, Giacomo, et al.
Publicado: (2021)