Cargando…
A multicohort geometric deep learning study of age dependent cortical and subcortical morphologic interactions for fluid intelligence prediction
The relationship of human brain structure to cognitive function is complex, and how this relationship differs between childhood and adulthood is poorly understood. One strong hypothesis suggests the cognitive function of Fluid Intelligence (Gf) is dependent on prefrontal cortex and parietal cortex....
Autores principales: | Wu, Yunan, Besson, Pierre, Azcona, Emanuel A., Bandt, S. Kathleen, Parrish, Todd B., Breiter, Hans C., Katsaggelos, Aggelos K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588039/ https://www.ncbi.nlm.nih.gov/pubmed/36273036 http://dx.doi.org/10.1038/s41598-022-22313-x |
Ejemplares similares
-
Cortical and subcortical morphological alteration in Angelman syndrome
por: Du, Xiaonan, et al.
Publicado: (2023) -
DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels
por: Wu, Yunan, et al.
Publicado: (2023) -
Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks
por: Punjabi, Arjun, et al.
Publicado: (2019) -
Subcortical and cortical morphological anomalies as an endophenotype in Obsessive-Compulsive Disorder
por: Shaw, Philip, et al.
Publicado: (2014) -
Cortical and subcortical morphological alterations in motor subtypes of Parkinson’s disease
por: Li, Jianyu, et al.
Publicado: (2022)